These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 10784343)

  • 21. Apamin, a selective blocker of SK(Ca) channels, inhibits posthypoxic hyperexcitability but does not affect rapid hypoxic preconditioning in hippocampal CA1 pyramidal neurons in vitro.
    Levin SG; Shamsutdinova AA; Godukhin OV
    Neurosci Lett; 2010 Oct; 484(1):35-8. PubMed ID: 20708065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen-sensing pathway for SK channels in the ovine adrenal medulla.
    Keating DJ; Rychkov GY; Giacomin P; Roberts ML
    Clin Exp Pharmacol Physiol; 2005 Oct; 32(10):882-7. PubMed ID: 16173951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A rotenone-sensitive site and H2O2 are key components of hypoxia-sensing in neonatal rat adrenomedullary chromaffin cells.
    Thompson RJ; Buttigieg J; Zhang M; Nurse CA
    Neuroscience; 2007 Mar; 145(1):130-41. PubMed ID: 17207576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endothelin activates large-conductance K+ channels in rat lactotrophs: reversal by long-term exposure to dopamine agonist.
    Kanyicska B; Freeman ME; Dryer SE
    Endocrinology; 1997 Aug; 138(8):3141-53. PubMed ID: 9231761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle.
    Blatz AL; Magleby KL
    Nature; 1986 Oct 23-29; 323(6090):718-20. PubMed ID: 2430185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blockade of Ca2+ -activated K+ channels by galantamine can also contribute to the potentiation of catecholamine secretion from chromaffin cells.
    Alés E; Gullo F; Arias E; Olivares R; García AG; Wanke E; López MG
    Eur J Pharmacol; 2006 Oct; 548(1-3):45-52. PubMed ID: 16949070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of tetrandrine-induced inhibition of large-conductance calcium-activated potassium channels in a human endothelial cell line (HUV-EC-C).
    Wu SN; Li HF; Lo YC
    J Pharmacol Exp Ther; 2000 Jan; 292(1):188-95. PubMed ID: 10604947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different contributions of calcium channel subtypes to electrical excitability of chromaffin cells in rat adrenal slices.
    Albiñana E; Segura-Chama P; Baraibar AM; Hernández-Cruz A; Hernández-Guijo JM
    J Neurochem; 2015 May; 133(4):511-21. PubMed ID: 25683177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. H2S induces catecholamine secretion in rat adrenal chromaffin cells.
    Zhu D; Yu X; Sun J; Li J; Ma X; Yao W
    Toxicology; 2012 Dec; 302(1):40-3. PubMed ID: 22841986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Apamin-sensitive Ca2+-dependent K+ current and hyperpolarization in human endothelial cells.
    Muraki K; Imaizumi Y; Ohya S; Sato K; Takii T; Onozaki K; Watanabe M
    Biochem Biophys Res Commun; 1997 Jul; 236(2):340-3. PubMed ID: 9240436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amyloid beta peptides mediate physiological remodelling of the acute O2 sensitivity of adrenomedullary chromaffin cells following chronic hypoxia.
    Brown ST; Johnson RP; Senaratne R; Fearon IM
    Cardiovasc Res; 2004 Dec; 64(3):536-43. PubMed ID: 15537507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gambierol Blocks a K
    Benoit E; Schlumberger S; Molgó J; Sasaki M; Fuwa H; Bournaud R
    Toxins (Basel); 2022 Apr; 14(4):. PubMed ID: 35448863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of Small-Conductance, Ca
    Guo S; Chen Z; Chen PS; Rubart M
    Front Pharmacol; 2021; 12():651267. PubMed ID: 33967791
    [No Abstract]   [Full Text] [Related]  

  • 34. Pb2+ activates potassium currents in bovine adrenal chromaffin cells.
    Sun LR; Suszkiw JB
    Neurosci Lett; 1994 Nov; 182(1):41-3. PubMed ID: 7534389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonneurogenic hypoxia sensitivity in rat adrenal slices.
    Takeuchi Y; Mochizuki-Oda N; Yamada H; Kurokawa K; Watanabe Y
    Biochem Biophys Res Commun; 2001 Nov; 289(1):51-6. PubMed ID: 11708775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen sensing in neuroepithelial and adrenal chromaffin cells.
    Nurse CA; Buttigieg J; Thompson R; Zhang M; Cutz E
    Novartis Found Symp; 2006; 272():106-14; discussion 114-8, 131-40. PubMed ID: 16686432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Inhibition of the Small-Conductance Ca
    Bitay G; Tóth N; Déri S; Szlovák J; Kohajda Z; Varró A; Nagy N
    Pharmaceuticals (Basel); 2022 Mar; 15(3):. PubMed ID: 35337111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypoxia-regulated catecholamine secretion in chromaffin cells.
    Nurse CA; Salman S; Scott AL
    Cell Tissue Res; 2018 May; 372(2):433-441. PubMed ID: 29052004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox signaling in acute oxygen sensing.
    Gao L; González-Rodríguez P; Ortega-Sáenz P; López-Barneo J
    Redox Biol; 2017 Aug; 12():908-915. PubMed ID: 28476010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chronic exposure of neonatal rat adrenomedullary chromaffin cells to opioids in vitro blunts both hypoxia and hypercapnia chemosensitivity.
    Salman S; Buttigieg J; Zhang M; Nurse CA
    J Physiol; 2013 Jan; 591(2):515-29. PubMed ID: 23148319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.