BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1002 related articles for article (PubMed ID: 10784453)

  • 1. Resetting central and peripheral circadian oscillators in transgenic rats.
    Yamazaki S; Numano R; Abe M; Hida A; Takahashi R; Ueda M; Block GD; Sakaki Y; Menaker M; Tei H
    Science; 2000 Apr; 288(5466):682-5. PubMed ID: 10784453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The suprachiasmatic nucleus entrains, but does not sustain, circadian rhythmicity in the olfactory bulb.
    Granados-Fuentes D; Prolo LM; Abraham U; Herzog ED
    J Neurosci; 2004 Jan; 24(3):615-9. PubMed ID: 14736846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro.
    Molyneux PC; Dahlgren MK; Harrington ME
    Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian rhythms in isolated brain regions.
    Abe M; Herzog ED; Yamazaki S; Straume M; Tei H; Sakaki Y; Menaker M; Block GD
    J Neurosci; 2002 Jan; 22(1):350-6. PubMed ID: 11756518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of aging on central and peripheral mammalian clocks.
    Yamazaki S; Straume M; Tei H; Sakaki Y; Menaker M; Block GD
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10801-6. PubMed ID: 12149444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biological clock nucleus: a multiphasic oscillator network regulated by light.
    Quintero JE; Kuhlman SJ; McMahon DG
    J Neurosci; 2003 Sep; 23(22):8070-6. PubMed ID: 12954869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entrainment of the circadian clock in the liver by feeding.
    Stokkan KA; Yamazaki S; Tei H; Sakaki Y; Menaker M
    Science; 2001 Jan; 291(5503):490-3. PubMed ID: 11161204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent circadian oscillations of Period1 in specific brain areas in vivo and in vitro.
    Abraham U; Prior JL; Granados-Fuentes D; Piwnica-Worms DR; Herzog ED
    J Neurosci; 2005 Sep; 25(38):8620-6. PubMed ID: 16177029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian rhythm generation and entrainment in astrocytes.
    Prolo LM; Takahashi JS; Herzog ED
    J Neurosci; 2005 Jan; 25(2):404-8. PubMed ID: 15647483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus.
    Damiola F; Le Minh N; Preitner N; Kornmann B; Fleury-Olela F; Schibler U
    Genes Dev; 2000 Dec; 14(23):2950-61. PubMed ID: 11114885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immortalized cell lines for real-time analysis of circadian pacemaker and peripheral oscillator properties.
    Farnell YF; Shende VR; Neuendorff N; Allen GC; Earnest DJ
    Eur J Neurosci; 2011 Apr; 33(8):1533-40. PubMed ID: 21366728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system.
    Davidson AJ; Castanon-Cervantes O; Leise TL; Molyneux PC; Harrington ME
    Eur J Neurosci; 2009 Jan; 29(1):171-80. PubMed ID: 19032592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker.
    Guo H; Brewer JM; Lehman MN; Bittman EL
    J Neurosci; 2006 Jun; 26(24):6406-12. PubMed ID: 16775127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral circadian oscillators and their rhythmic regulation.
    Fukuhara C; Tosini G
    Front Biosci; 2003 May; 8():d642-51. PubMed ID: 12700075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles.
    Yamanaka Y; Honma S; Honma K
    Genes Cells; 2008 May; 13(5):497-507. PubMed ID: 18429821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resetting of central and peripheral circadian oscillators in aged rats.
    Davidson AJ; Yamazaki S; Arble DM; Menaker M; Block GD
    Neurobiol Aging; 2008 Mar; 29(3):471-7. PubMed ID: 17129640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong resetting of the mammalian clock by constant light followed by constant darkness.
    Chen R; Seo DO; Bell E; von Gall C; Lee C
    J Neurosci; 2008 Nov; 28(46):11839-47. PubMed ID: 19005049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms.
    Numano R; Yamazaki S; Umeda N; Samura T; Sujino M; Takahashi R; Ueda M; Mori A; Yamada K; Sakaki Y; Inouye ST; Menaker M; Tei H
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3716-21. PubMed ID: 16537451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New reporter system for Per1 and Bmal1 expressions revealed self-sustained circadian rhythms in peripheral tissues.
    Nishide SY; Honma S; Nakajima Y; Ikeda M; Baba K; Ohmiya Y; Honma K
    Genes Cells; 2006 Oct; 11(10):1173-82. PubMed ID: 16999737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.