These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10786295)

  • 1. TEXTAL: a pattern recognition system for interpreting electron density maps.
    Ioerger TR; Holton T; Christopher JA; Sacchettini JC
    Proc Int Conf Intell Syst Mol Biol; 1999; ():130-7. PubMed ID: 10786295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining protein structure from electron-density maps using pattern matching.
    Holton T; Ioerger TR; Christopher JA; Sacchettini JC
    Acta Crystallogr D Biol Crystallogr; 2000 Jun; 56(Pt 6):722-34. PubMed ID: 10818349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A probabilistic approach to protein backbone tracing in electron density maps.
    DiMaio F; Shavlik J; Phillips GN
    Bioinformatics; 2006 Jul; 22(14):e81-9. PubMed ID: 16873525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving amino-acid identification, fit and C(alpha) prediction using the Simplex method in automated model building.
    Romo TD; Sacchettini JC; Ioerger TR
    Acta Crystallogr D Biol Crystallogr; 2006 Nov; 62(Pt 11):1401-6. PubMed ID: 17057345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pattern-recognition-based detection of planar objects in three-dimensional electron-density maps.
    Hattne J; Lamzin VS
    Acta Crystallogr D Biol Crystallogr; 2008 Aug; D64(Pt 8):834-42. PubMed ID: 18645232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pattern-recognition methods to identify secondary structure within X-ray crystallographic electron-density maps.
    Oldfield T
    Acta Crystallogr D Biol Crystallogr; 2002 Mar; 58(Pt 3):487-93. PubMed ID: 11856835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining relevant features to recognize electron density patterns in x-ray protein crystallography.
    Gopal K; Romo TD; Sacchettini JC; Ioerger TR
    J Bioinform Comput Biol; 2005 Jun; 3(3):645-76. PubMed ID: 16108088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated crystallographic ligand building using the medial axis transform of an electron-density isosurface.
    Aishima J; Russel DS; Guibas LJ; Adams PD; Brunger AT
    Acta Crystallogr D Biol Crystallogr; 2005 Oct; 61(Pt 10):1354-63. PubMed ID: 16204887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallographic protein model-building on the web.
    Gopal K; McKee E; Romo T; Pai R; Smith J; Sacchettini J; Ioerger T
    Bioinformatics; 2007 Feb; 23(3):375-7. PubMed ID: 17138588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying non-crystallographic symmetry in protein electron-density maps: a feature-based approach.
    Pai R; Sacchettini J; Ioerger T
    Acta Crystallogr D Biol Crystallogr; 2006 Sep; 62(Pt 9):1012-21. PubMed ID: 16929102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic modeling of protein backbones in electron-density maps via prediction of Calpha coordinates.
    Ioerger TR; Sacchettini JC
    Acta Crystallogr D Biol Crystallogr; 2002 Dec; 58(Pt 12):2043-54. PubMed ID: 12454463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weighting features to recognize 3D patterns of electron density in X-ray protein crystallography.
    Gopal K; Romo TD; Sacchettini JC; Ioerger TR
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():255-65. PubMed ID: 16448019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid method for positioning small flexible molecules, nucleic acids, and large protein fragments in experimental electron density maps.
    Diller DJ; Pohl E; Redinbo MR; Hovey BT; Hol WG
    Proteins; 1999 Sep; 36(4):512-25. PubMed ID: 10450093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creating protein models from electron-density maps using particle-filtering methods.
    DiMaio F; Kondrashov DA; Bitto E; Soni A; Bingman CA; Phillips GN; Shavlik JW
    Bioinformatics; 2007 Nov; 23(21):2851-8. PubMed ID: 17933855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallographic threading.
    Ableson A; Glasgow JI
    Proc Int Conf Intell Syst Mol Biol; 1999; ():2-9. PubMed ID: 10786280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A database method for automated map interpretation in protein crystallography.
    Diller DJ; Redinbo MR; Pohl E; Hol WG
    Proteins; 1999 Sep; 36(4):526-41. PubMed ID: 10450094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ConfMatch: automating electron-density map interpretation by matching conformations.
    Wang CE
    Acta Crystallogr D Biol Crystallogr; 2000 Dec; 56(Pt 12):1591-611. PubMed ID: 11092926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated protein model building combined with iterative structure refinement.
    Perrakis A; Morris R; Lamzin VS
    Nat Struct Biol; 1999 May; 6(5):458-63. PubMed ID: 10331874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. You are lost without a map: Navigating the sea of protein structures.
    Lamb AL; Kappock TJ; Silvaggi NR
    Biochim Biophys Acta; 2015 Apr; 1854(4):258-68. PubMed ID: 25554228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.