These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 10786306)

  • 1. A linear time algorithm for finding all maximal scoring subsequences.
    Ruzzo WL; Tompa M
    Proc Int Conf Intell Syst Mol Biol; 1999; ():234-41. PubMed ID: 10786306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Searching for repeats, as an example of using the generalised Ruzzo-Tompa algorithm to find optimal subsequences with gaps.
    Spouge JL; Mariño-Ramírez L; Sheetlin SL
    Int J Bioinform Res Appl; 2014; 10(4-5):384-408. PubMed ID: 24989859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simple Linear Space Algorithm for Computing Nonoverlapping Inversion and Transposition Distance in Quadratic Average Time.
    Wang X; Wang L
    J Comput Biol; 2018 Jun; 25(6):563-575. PubMed ID: 29658774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An O(N2) algorithm for discovering optimal Boolean pattern pairs.
    Bannai H; Hyyrö H; Shinohara A; Takeda M; Nakai K; Miyano S
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(4):159-70. PubMed ID: 17051698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multistage sequencing by hybridization.
    Kruglyak S
    J Comput Biol; 1998; 5(1):165-71. PubMed ID: 9541879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding sequence motifs in prokaryotic genomes--a brief practical guide for a microbiologist.
    Mrázek J
    Brief Bioinform; 2009 Sep; 10(5):525-36. PubMed ID: 19553402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voting algorithms for the motif finding problem.
    Liu X; Ma B; Wang L
    Comput Syst Bioinformatics Conf; 2008; 7():37-47. PubMed ID: 19642267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can we recover a sequence, just knowing all its subsequences of given length?
    Guénoche A
    Comput Appl Biosci; 1992 Dec; 8(6):569-74. PubMed ID: 1468013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel algorithm for identifying low-complexity regions in a protein sequence.
    Li X; Kahveci T
    Bioinformatics; 2006 Dec; 22(24):2980-7. PubMed ID: 17018537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CLAGen: a tool for clustering and annotating gene sequences using a suffix tree algorithm.
    Han Si; Lee SG; Kim KH; Choi CJ; Kim YH; Hwang KS
    Biosystems; 2006 Jun; 84(3):175-82. PubMed ID: 16384634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient alignment algorithm for searching simple pseudoknots over long genomic sequence.
    Ma C; Wong TK; Lam TW; Hon WK; Sadakane K; Yiu SM
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1629-38. PubMed ID: 22848134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MotifCut: regulatory motifs finding with maximum density subgraphs.
    Fratkin E; Naughton BT; Brutlag DL; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e150-7. PubMed ID: 16873465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An algorithm for the determination and quantification of components of nucleic acid mixtures based on single sequencing reactions.
    Pozhitkov A; Stemshorn K; Tautz D
    BMC Bioinformatics; 2005 Nov; 6():281. PubMed ID: 16316462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MUSA: a parameter free algorithm for the identification of biologically significant motifs.
    Mendes ND; Casimiro AC; Santos PM; Sá-Correia I; Oliveira AL; Freitas AT
    Bioinformatics; 2006 Dec; 22(24):2996-3002. PubMed ID: 17068086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum A posteriori classification of DNA structure from sequence information.
    Loewenstern DM; Berman HM; Hirsh H
    Pac Symp Biocomput; 1998; ():669-80. PubMed ID: 9697221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation algorithm for DNA sequences.
    Zhang CT; Gao F; Zhang R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041917. PubMed ID: 16383430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A linear programming approach for identifying a consensus sequence on DNA sequences.
    Li HL; Fu CJ
    Bioinformatics; 2005 May; 21(9):1838-45. PubMed ID: 15671117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A segment-based dynamic programming algorithm for predicting gene structure.
    Wu TD
    J Comput Biol; 1996; 3(3):375-94. PubMed ID: 8891956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FOOTER: a web tool for finding mammalian DNA regulatory regions using phylogenetic footprinting.
    Corcoran DL; Feingold E; Benos PV
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W442-6. PubMed ID: 15980508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finding exact optimal motifs in matrix representation by partitioning.
    Leung HC; Chin FY
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii86-92. PubMed ID: 16204132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.