These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10786307)

  • 1. Database screening for HIV protease ligands: the influence of binding-site conformation and representation on ligand selectivity.
    Schnecke V; Kuhn LA
    Proc Int Conf Intell Syst Mol Biol; 1999; ():242-51. PubMed ID: 10786307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in automated docking applied to human immunodeficiency virus type 1 protease.
    Miller MD; Sheridan RP; Kearsley SK; Underwood DJ
    Methods Enzymol; 1994; 241():354-70. PubMed ID: 7854188
    [No Abstract]   [Full Text] [Related]  

  • 3. Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking.
    Huang SY; Zou X
    Proteins; 2007 Feb; 66(2):399-421. PubMed ID: 17096427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular docking to ensembles of protein structures.
    Knegtel RM; Kuntz ID; Oshiro CM
    J Mol Biol; 1997 Feb; 266(2):424-40. PubMed ID: 9047373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance.
    Perola E; Walters WP; Charifson PS
    Proteins; 2004 Aug; 56(2):235-49. PubMed ID: 15211508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacophore-based molecular docking to account for ligand flexibility.
    Joseph-McCarthy D; Thomas BE; Belmarsh M; Moustakas D; Alvarez JC
    Proteins; 2003 May; 51(2):172-88. PubMed ID: 12660987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification.
    Islam MA; Pillay TS
    J Mol Graph Model; 2015 Mar; 56():20-30. PubMed ID: 25541527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure based drug design for HIV protease: from molecular modeling to cheminformatics.
    Volarath P; Harrison RW; Weber IT
    Curr Top Med Chem; 2007; 7(10):1030-8. PubMed ID: 17508936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility.
    Zoete V; Michielin O; Karplus M
    J Mol Biol; 2002 Jan; 315(1):21-52. PubMed ID: 11771964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.
    Verkhivker GM
    Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.
    Estrada T; Zhang B; Cicotti P; Armen RS; Taufer M
    Comput Biol Med; 2012 Jul; 42(7):758-71. PubMed ID: 22658682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using AutoDock for ligand-receptor docking.
    Morris GM; Huey R; Olson AJ
    Curr Protoc Bioinformatics; 2008 Dec; Chapter 8():Unit 8.14. PubMed ID: 19085980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating protein flexibility in structure-based drug discovery: using HIV-1 protease as a test case.
    Meagher KL; Carlson HA
    J Am Chem Soc; 2004 Oct; 126(41):13276-81. PubMed ID: 15479081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations.
    Chang CE; Trylska J; Tozzini V; McCammon JA
    Chem Biol Drug Des; 2007 Jan; 69(1):5-13. PubMed ID: 17313452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FlexE: efficient molecular docking considering protein structure variations.
    Claussen H; Buning C; Rarey M; Lengauer T
    J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of substrate-binding region of the active site of monoamine oxidase A.
    Veselovsky AV; Medvedev AE; Tikhonova OV; Skvortsov VS; Ivanov AS
    Biochemistry (Mosc); 2000 Aug; 65(8):910-6. PubMed ID: 11002183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIV-1 protease substrate binding and product release pathways explored with coarse-grained molecular dynamics.
    Trylska J; Tozzini V; Chang CE; McCammon JA
    Biophys J; 2007 Jun; 92(12):4179-87. PubMed ID: 17384072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragment-Based flexible ligand docking by evolutionary optimization.
    Budin N; Majeux N; Caflisch A
    Biol Chem; 2001 Sep; 382(9):1365-72. PubMed ID: 11688719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Screening of new HIV inhibitors based on the database of traditional Chinese medicine].
    Gao WN; Li Y; Zhang R; Gao H; Xu WR; Li AX; Du QS; Zhang X; Wei DQ
    Yao Xue Xue Bao; 2006 Mar; 41(3):241-6. PubMed ID: 16758996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of structural stress on the flexibility and adaptability of HIV-1 protease.
    Oehme DP; Wilson DJ; Brownlee RT
    J Chem Inf Model; 2011 May; 51(5):1064-73. PubMed ID: 21500830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.