BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1078670)

  • 21. The effect of chain length on the phosphorolysis of oligonucleotides by polynucleotide phosphorylase.
    Chou JY; Singer MF
    J Biol Chem; 1970 Mar; 245(5):1005-11. PubMed ID: 4313699
    [No Abstract]   [Full Text] [Related]  

  • 22. Further studies on the isolation and properties of polyriboadenylate polymerase from Escherichia coli PR7 (RNase I-, pnp).
    Ramanarayanan M; Srinivasan PR
    J Biol Chem; 1976 Oct; 251(20):6274-86. PubMed ID: 789366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of a novel flourescent polyriboadenylic acid analog by polynucleotide phosphorylase.
    Tsou KC; Yip KF
    Biopolymers; 1974 May; 13(5):987-93. PubMed ID: 4605198
    [No Abstract]   [Full Text] [Related]  

  • 24. Polynucleotide phosphorylase from Streptomyces aureofaciens: purification and properties.
    Simúth J; Zelinka J; Polek B
    Biochim Biophys Acta; 1975 Feb; 379(2):397-407. PubMed ID: 1122294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Equilibrium constants under physiological conditions for the reactions of polynucleotide phosphorylase and RNA polymerase.
    Liegel J; Guynn RW
    J Biol Chem; 1979 Mar; 254(6):1992-7. PubMed ID: 33992
    [No Abstract]   [Full Text] [Related]  

  • 26. Polynucleotides; partial purification and properties of a polynucleotide phosphorylase from Micrococcus lysodeikticus.
    BEERS RF
    Biochem J; 1957 Aug; 66(4):686-93. PubMed ID: 13459919
    [No Abstract]   [Full Text] [Related]  

  • 27. Polynucleotide phosphorylase-based photometric assay for inorganic phosphate.
    Ghetta A; Matus-Ortega M; García-Mena J; Dehò G; Tortora P; Regonesi ME
    Anal Biochem; 2004 Apr; 327(2):209-14. PubMed ID: 15051537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and properties of highly-purified Vibrio costicola polynucleotide phosphorylase.
    Harry K; Sharma N; Fitt PS
    Biochim Biophys Acta; 1985 Mar; 828(1):29-38. PubMed ID: 3970947
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polynucleotides. XXVI. Complex formation of polynucleotides derived from formycin and laurusin with cyclonucleoside oligonucleotides.
    Ikehara M; Tezuka T
    Nucleic Acids Res; 1974 Jul; 1(7):907-17. PubMed ID: 10793723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Codon-anticodon interaction studied with oligonucleotides containing 3 -deazauridine, 4 -deoxyuridine or 3 -deaza- 4 -deoxyuridine. I. Synthesis by primer-dependent polynucleotide phosphorylase of oligonucleotides containing modofied nucleosides.
    Schetters H; Gassen HG; Matthaei H
    Biochim Biophys Acta; 1972 Jul; 272(4):549-59. PubMed ID: 4340554
    [No Abstract]   [Full Text] [Related]  

  • 31. Study on the structure-function relationship of polynucleotide phosphorylase: model of a proteolytic degraded polynucleotide phosphorylase.
    Guissani A; Portier C
    Nucleic Acids Res; 1976 Nov; 3(11):3015-24. PubMed ID: 794831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of polynucleotide phosphorylase.
    Sulewski M; Marchese-Ragona SP; Johnson KA; Benkovic SJ
    Biochemistry; 1989 Jul; 28(14):5855-64. PubMed ID: 2476178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzymatic synthesis of polymers containing nicotinamide mononucleotide.
    Liu R; Orgel LE
    Nucleic Acids Res; 1995 Sep; 23(18):3742-9. PubMed ID: 7479005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and properties of poly 5-methylthiouridylic acid.
    Ho YK
    Nucleic Acids Res; 1984 Oct; 12(19):7599-614. PubMed ID: 6548563
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stepwise phosphorolysis with polynucleotide phosphorylase: a novel method for sequence analysis of oligoribonucleotides.
    Kaufmann G; Grosfeld H; Littauer UZ
    FEBS Lett; 1973 Apr; 31(1):47-52. PubMed ID: 4575634
    [No Abstract]   [Full Text] [Related]  

  • 36. Sequence studies of nonradioactive Mycoplasma tRNA Phe with the aid of polynucleotide phosphorylase and polynucleotide kinase.
    Szeto KS; Soll D
    Nucleic Acids Res; 1974 Dec; 1(12):1733-8. PubMed ID: 4449733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Isolation and some properties of polynucleotide phosphorylase from E. coli].
    Bagdonas AS; Sabaliauskene VL; Iuodka BA
    Biokhimiia; 1981 May; 46(5):802-8. PubMed ID: 7028138
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Streptomyces coelicolor polynucleotide phosphorylase can polymerize nucleoside diphosphates under phosphorolysis conditions, with implications for the degradation of structured RNAs.
    Jones GH; Mackie GA
    J Bacteriol; 2013 Nov; 195(22):5151-9. PubMed ID: 24039261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of 2'-O-alkylation on the structure of single-stranded polynucleotides and the stability of 2'-O-alkylated polynucleotide complexes.
    Rottman F; Friderici K; Comstock P; Khan MK
    Biochemistry; 1974 Jun; 13(13):2762-71. PubMed ID: 4847544
    [No Abstract]   [Full Text] [Related]  

  • 40. Polynucleotide phosphorylase of Micrococcus luteus. Studies on the polymerization reaction catalyzed by primer-dependent and primer-independent enzymes.
    Moses RE; Singer MF
    J Biol Chem; 1970 May; 245(9):2414-22. PubMed ID: 5442281
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.