These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10787090)

  • 1. Dehalogenation of xenobiotics as a consequence of binding to humic materials.
    Park JW; Dec J; Kim JE; Bollag JM
    Arch Environ Contam Toxicol; 2000 May; 38(4):405-10. PubMed ID: 10787090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of substituents from phenolic compounds during oxidative coupling reactions.
    Dec J; Haider K; Bollag JM
    Chemosphere; 2003 Jul; 52(3):549-56. PubMed ID: 12738292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of 2,4,6-trinitrotoluene (TNT) and 4-amino-2,6-dinitrotoluene with humic monomers in the presence of oxidative enzymes.
    Wang CJ; Thiele S; Bollag JM
    Arch Environ Contam Toxicol; 2002 Jan; 42(1):1-8. PubMed ID: 11706361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic oxidative transformation of chlorophenol mixtures.
    Bollag JM; Chu HL; Rao MA; Gianfreda L
    J Environ Qual; 2003; 32(1):63-9. PubMed ID: 12549543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of reactive and inert chemicals in the presence of oxidoreductases: reaction of the herbicide bentazon and its metabolites with humic monomers.
    Kim JE; Wang CJ; Bollag JM
    Biodegradation; 1997-1998; 8(6):387-92. PubMed ID: 15765584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-coupling of sulfonamide antimicrobial agents with model humic constituents.
    Bialk HM; Simpson AJ; Pedersen JA
    Environ Sci Technol; 2005 Jun; 39(12):4463-73. PubMed ID: 16047782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-MnO
    Sun K; Li S; Waigi MG; Huang Q
    Environ Sci Pollut Res Int; 2018 May; 25(15):14416-14425. PubMed ID: 29525863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of bound residues of 8-hydroxybentazon by oxidoreductive catalysts in soil.
    Kim JS; Park JW; Lee SE; Kim JE
    J Agric Food Chem; 2002 Jun; 50(12):3507-11. PubMed ID: 12033819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal Laccase-Catalyzed Oxidation of Naturally Occurring Phenols for Enhanced Germination and Salt Tolerance of Arabidopsis thaliana: A Green Route for Synthesizing Humic-like Fertilizers.
    Cha JY; Kim TW; Choi JH; Jang KS; Khaleda L; Kim WY; Jeon JR
    J Agric Food Chem; 2017 Feb; 65(6):1167-1177. PubMed ID: 28112921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H2 consumption during the microbial reductive dehalogenation of chlorinated phenols and tetrachloroethene.
    Mazur CS; Jones WJ; Tebes-Stevens C
    Biodegradation; 2003 Aug; 14(4):285-95. PubMed ID: 12948058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of the fungicide cyprodinil by a laccase of Trametes villosa in the presence of phenolic mediators and humic acid.
    Kang KH; Dec J; Park H; Bollag JM
    Water Res; 2002 Nov; 36(19):4907-15. PubMed ID: 12448535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of phenolic mediators and humic acid on cyprodinil transformation in presence of birnessite.
    Kang KH; Dec J; Park H; Bollag JM
    Water Res; 2004 Jun; 38(11):2737-45. PubMed ID: 15207604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR investigation of enzymatic coupling of sulfonamide antimicrobials with humic substances.
    Bialk HM; Pedersen JA
    Environ Sci Technol; 2008 Jan; 42(1):106-12. PubMed ID: 18350883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the oxidation products produced by tetrahalobisphenol A flame retardants as a result of potassium monopersulfate oxidation with an iron(III)-tetrakis(p-sulfonatophenyl)porphyrin in the presence of humic acid.
    Mizutani Y; Maeno S; Zhu Q; Fukushima M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(4):365-75. PubMed ID: 24345234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative catalytic degradation of a metabolite 3,5-dichloroaniline derived from dicarboximide fungicide by laccase and MnO
    Sarker A; Lee SH; Kwak SY; Nandi R; Kim JE
    Ecotoxicol Environ Saf; 2020 Jun; 196():110561. PubMed ID: 32276163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of triclosan by laccase catalyzed oxidation: The influence of humic acid-metal binding process.
    Lu J; Shi Y; Ji Y; Kong D; Huang Q
    Environ Pollut; 2017 Jan; 220(Pt B):1418-1423. PubMed ID: 27823864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent bonding of chloroanilines to humic constituents: pathways, kinetics, and stability.
    Kong D; Xia Q; Liu G; Huang Q; Lu J
    Environ Pollut; 2013 Sep; 180():48-54. PubMed ID: 23727567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Halogenated pesticide transformation by a laccase-mediator system.
    Torres-Duarte C; Roman R; Tinoco R; Vazquez-Duhalt R
    Chemosphere; 2009 Oct; 77(5):687-92. PubMed ID: 19695672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of solid substrates for enzyme production by Coriolus versicolor, for use in bioremediation of chlorophenols in aqueous effluents.
    Ullah MA; Kadhim H; Rastall RA; Evans CS
    Appl Microbiol Biotechnol; 2000 Dec; 54(6):832-7. PubMed ID: 11152077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans Bi 7/2.
    Hofrichter M; Bublitz F; Fritsche W
    J Basic Microbiol; 1994; 34(3):163-72. PubMed ID: 8071803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.