These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
577 related articles for article (PubMed ID: 10788323)
1. Binding of EcoP15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence. Reddy YV; Rao DN J Mol Biol; 2000 May; 298(4):597-610. PubMed ID: 10788323 [TBL] [Abstract][Full Text] [Related]
2. Molecular enzymology of the EcoRV DNA-(Adenine-N (6))-methyltransferase: kinetics of DNA binding and bending, kinetic mechanism and linear diffusion of the enzyme on DNA. Gowher H; Jeltsch A J Mol Biol; 2000 Oct; 303(1):93-110. PubMed ID: 11021972 [TBL] [Abstract][Full Text] [Related]
3. Unusual 2-aminopurine fluorescence from a complex of DNA and the EcoKI methyltransferase. Su TJ; Connolly BA; Darlington C; Mallin R; Dryden DT Nucleic Acids Res; 2004; 32(7):2223-30. PubMed ID: 15107490 [TBL] [Abstract][Full Text] [Related]
4. Interaction of EcoP15I DNA methyltransferase with oligonucleotides containing the asymmetric sequence 5'-CAGCAG-3'. Ahmad I; Rao DN J Mol Biol; 1994 Sep; 242(4):378-88. PubMed ID: 7932697 [TBL] [Abstract][Full Text] [Related]
5. Sequence-specific DNA binding by EcoKI, a type IA DNA restriction enzyme. Powell LM; Dryden DT; Murray NE J Mol Biol; 1998 Nov; 283(5):963-76. PubMed ID: 9799636 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of conserved motifs in EcoP15I DNA methyltransferase. Ahmad I; Rao DN J Mol Biol; 1996 Jun; 259(2):229-40. PubMed ID: 8656425 [TBL] [Abstract][Full Text] [Related]
7. Targeted base stacking disruption by the EcoRI DNA methyltransferase. Allan BW; Reich NO Biochemistry; 1996 Nov; 35(47):14757-62. PubMed ID: 8942637 [TBL] [Abstract][Full Text] [Related]
8. The DNA binding characteristics of the trimeric EcoKI methyltransferase and its partially assembled dimeric form determined by fluorescence polarisation and DNA footprinting. Powell LM; Connolly BA; Dryden DT J Mol Biol; 1998 Nov; 283(5):947-61. PubMed ID: 9799635 [TBL] [Abstract][Full Text] [Related]
9. DNA recognition by the EcoK methyltransferase. The influence of DNA methylation and the cofactor S-adenosyl-L-methionine. Powell LM; Dryden DT; Willcock DF; Pain RH; Murray NE J Mol Biol; 1993 Nov; 234(1):60-71. PubMed ID: 8230207 [TBL] [Abstract][Full Text] [Related]
10. 2-Aminopurine flipped into the active site of the adenine-specific DNA methyltransferase M.TaqI: crystal structures and time-resolved fluorescence. Lenz T; Bonnist EY; Pljevaljcić G; Neely RK; Dryden DT; Scheidig AJ; Jones AC; Weinhold E J Am Chem Soc; 2007 May; 129(19):6240-8. PubMed ID: 17455934 [TBL] [Abstract][Full Text] [Related]
11. DNA cleavage by type III restriction-modification enzyme EcoP15I is independent of spacer distance between two head to head oriented recognition sites. Mücke M; Reich S; Möncke-Buchner E; Reuter M; Krüger DH J Mol Biol; 2001 Sep; 312(4):687-98. PubMed ID: 11575924 [TBL] [Abstract][Full Text] [Related]
12. Stopped-flow and mutational analysis of base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase. Liebert K; Hermann A; Schlickenrieder M; Jeltsch A J Mol Biol; 2004 Aug; 341(2):443-54. PubMed ID: 15276835 [TBL] [Abstract][Full Text] [Related]
13. DNA mismatch-specific base flipping by a bisacridine macrocycle. David A; Bleimling N; Beuck C; Lehn JM; Weinhold E; Teulade-Fichou MP Chembiochem; 2003 Dec; 4(12):1326-31. PubMed ID: 14661275 [TBL] [Abstract][Full Text] [Related]
14. Measurement of the absolute temporal coupling between DNA binding and base flipping. Allan BW; Reich NO; Beechem JM Biochemistry; 1999 Apr; 38(17):5308-14. PubMed ID: 10220317 [TBL] [Abstract][Full Text] [Related]
15. Functional characterization and modulation of the DNA cleavage efficiency of type III restriction endonuclease EcoP15I in its interaction with two sites in the DNA target. Möncke-Buchner E; Rothenberg M; Reich S; Wagenführ K; Matsumura H; Terauchi R; Krüger DH; Reuter M J Mol Biol; 2009 Apr; 387(5):1309-19. PubMed ID: 19250940 [TBL] [Abstract][Full Text] [Related]
16. Using the fluorescence decay of 2-aminopurine to investigate conformational change in the recognition sequence of the EcoRV DNA-(adenine-N6)-methyltransferase on enzyme binding. Bonnist EY; Liebert K; Dryden DT; Jeltsch A; Jones AC Biophys Chem; 2012 Jan; 160(1):28-34. PubMed ID: 21962489 [TBL] [Abstract][Full Text] [Related]
17. Time-resolved fluorescence of 2-aminopurine in DNA duplexes in the presence of the EcoP15I Type III restriction-modification enzyme. Ma L; Wu X; Wilson GG; Jones AC; Dryden DT Biochem Biophys Res Commun; 2014 Jun; 449(1):120-5. PubMed ID: 24813995 [TBL] [Abstract][Full Text] [Related]
18. Interaction of the E. coli DNA G:T-mismatch endonuclease (vsr protein) with oligonucleotides containing its target sequence. Turner DP; Connolly BA J Mol Biol; 2000 Dec; 304(5):765-78. PubMed ID: 11124025 [TBL] [Abstract][Full Text] [Related]
19. A novel bipartite mode of binding of M. smegmatis topoisomerase I to its recognition sequence. Sikder D; Nagaraja V J Mol Biol; 2001 Sep; 312(2):347-57. PubMed ID: 11554791 [TBL] [Abstract][Full Text] [Related]
20. Functional roles of the conserved aromatic amino acid residues at position 108 (motif IV) and position 196 (motif VIII) in base flipping and catalysis by the N6-adenine DNA methyltransferase from Thermus aquaticus. Pues H; Bleimling N; Holz B; Wölcke J; Weinhold E Biochemistry; 1999 Feb; 38(5):1426-34. PubMed ID: 9931007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]