BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 10788378)

  • 1. Physiological responses to starvation in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256.
    Fegatella F; Cavicchioli R
    Appl Environ Microbiol; 2000 May; 66(5):2037-44. PubMed ID: 10788378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific growth rate plays a critical role in hydrogen peroxide resistance of the marine oligotrophic ultramicrobacterium sphingomonas alaskensis strain RB2256.
    Ostrowski M; Cavicchioli R; Blaauw M; Gottschal JC
    Appl Environ Microbiol; 2001 Mar; 67(3):1292-9. PubMed ID: 11229924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256.
    Fegatella F; Lim J; Kjelleberg S; Cavicchioli R
    Appl Environ Microbiol; 1998 Nov; 64(11):4433-8. PubMed ID: 9797303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses to Stress and Nutrient Availability by the Marine Ultramicrobacterium Sphingomonas sp. Strain RB2256.
    Eguchi M; Nishikawa T; Macdonald K; Cavicchioli R; Gottschal JC; Kjelleberg S
    Appl Environ Microbiol; 1996 Apr; 62(4):1287-94. PubMed ID: 16535292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An assessment of protein profiles from the marine oligotrophic ultramicrobacterium, Sphingomonas sp. strain RB2256.
    Fegatella F; Ostrowski M; Cavicchioli R
    Electrophoresis; 1999 Jul; 20(10):2094-8. PubMed ID: 10451121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-species identification of proteins from proteome profiles of the marine oligotrophic ultramicrobacterium, Sphingopyxis alaskensis.
    Ostrowski M; Fegatella F; Wasinger V; Guilhaus M; Corthals GL; Cavicchioli R
    Proteomics; 2004 Jun; 4(6):1779-88. PubMed ID: 15174144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis).
    Cavicchioli R; Ostrowski M; Fegatella F; Goodchild A; Guixa-Boixereu N
    Microb Ecol; 2003 Mar; 45(3):203-17. PubMed ID: 12632213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956.
    Flärdh K; Cohen PS; Kjelleberg S
    J Bacteriol; 1992 Nov; 174(21):6780-8. PubMed ID: 1383195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marine bacterial isolates display diverse responses to UV-B radiation.
    Joux F; Jeffrey WH; Lebaron P; Mitchell DL
    Appl Environ Microbiol; 1999 Sep; 65(9):3820-7. PubMed ID: 10473381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses to multiple-nutrient starvation in marine Vibrio sp. strain CCUG 15956.
    Nyström T; Flärdh K; Kjelleberg S
    J Bacteriol; 1990 Dec; 172(12):7085-97. PubMed ID: 1701428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global analysis of the carbon starvation response of a marine Vibrio species with disruptions in genes homologous to relA and spoT.
    Ostling J; Holmquist L; Kjelleberg S
    J Bacteriol; 1996 Aug; 178(16):4901-8. PubMed ID: 8759854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon and nitrogen substrate utilization in the marine bacterium Sphingopyxis alaskensis strain RB2256.
    Williams TJ; Ertan H; Ting L; Cavicchioli R
    ISME J; 2009 Sep; 3(9):1036-52. PubMed ID: 19458655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Oligotrophic bacteria and their applications in environmental science].
    Zhang C; Huang L; Luan T; Lan C
    Ying Yong Sheng Tai Xue Bao; 2005 Apr; 16(4):773-7. PubMed ID: 16011186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular signal molecule(s) involved in the carbon starvation response of marine Vibrio sp. strain S14.
    Srinivasan S; Ostling J; Charlton T; de Nys R; Takayama K; Kjelleberg S
    J Bacteriol; 1998 Jan; 180(2):201-9. PubMed ID: 9440506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival, stress resistance, and alterations in protein expression in the marine vibrio sp. strain S14 during starvation for different individual nutrients.
    Nyström T; Olsson RM; Kjelleberg S
    Appl Environ Microbiol; 1992 Jan; 58(1):55-65. PubMed ID: 1371661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery from nutrient starvation by a marine Vibrio sp.
    Amy PS; Pauling C; Morita RY
    Appl Environ Microbiol; 1983 May; 45(5):1685-90. PubMed ID: 6191662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiology and transcriptome of the polycyclic aromatic hydrocarbon-degrading Sphingomonas sp. LH128 after long-term starvation.
    Fida TT; Moreno-Forero SK; Heipieper HJ; Springael D
    Microbiology (Reading); 2013 Sep; 159(Pt 9):1807-1817. PubMed ID: 23861307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations in rRNA content of marine Vibrio spp. during starvation-survival and recovery.
    Kramer JG; Singleton FL
    Appl Environ Microbiol; 1992 Jan; 58(1):201-7. PubMed ID: 1371659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a role of rpoE in stressed and unstressed cells of marine Vibrio angustum strain S14.
    Hild E; Takayama K; Olsson RM; Kjelleberg S
    J Bacteriol; 2000 Dec; 182(24):6964-74. PubMed ID: 11092857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of membrane and periplasmic proteins during starvation of a marine Vibrio sp.
    Nyström T; Albertson N; Kjelleberg S
    J Gen Microbiol; 1988 Jun; 134(6):1645-51. PubMed ID: 3221201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.