These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 10788378)
1. Physiological responses to starvation in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256. Fegatella F; Cavicchioli R Appl Environ Microbiol; 2000 May; 66(5):2037-44. PubMed ID: 10788378 [TBL] [Abstract][Full Text] [Related]
2. Specific growth rate plays a critical role in hydrogen peroxide resistance of the marine oligotrophic ultramicrobacterium sphingomonas alaskensis strain RB2256. Ostrowski M; Cavicchioli R; Blaauw M; Gottschal JC Appl Environ Microbiol; 2001 Mar; 67(3):1292-9. PubMed ID: 11229924 [TBL] [Abstract][Full Text] [Related]
3. Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256. Fegatella F; Lim J; Kjelleberg S; Cavicchioli R Appl Environ Microbiol; 1998 Nov; 64(11):4433-8. PubMed ID: 9797303 [TBL] [Abstract][Full Text] [Related]
4. Responses to Stress and Nutrient Availability by the Marine Ultramicrobacterium Sphingomonas sp. Strain RB2256. Eguchi M; Nishikawa T; Macdonald K; Cavicchioli R; Gottschal JC; Kjelleberg S Appl Environ Microbiol; 1996 Apr; 62(4):1287-94. PubMed ID: 16535292 [TBL] [Abstract][Full Text] [Related]
5. An assessment of protein profiles from the marine oligotrophic ultramicrobacterium, Sphingomonas sp. strain RB2256. Fegatella F; Ostrowski M; Cavicchioli R Electrophoresis; 1999 Jul; 20(10):2094-8. PubMed ID: 10451121 [TBL] [Abstract][Full Text] [Related]
6. Cross-species identification of proteins from proteome profiles of the marine oligotrophic ultramicrobacterium, Sphingopyxis alaskensis. Ostrowski M; Fegatella F; Wasinger V; Guilhaus M; Corthals GL; Cavicchioli R Proteomics; 2004 Jun; 4(6):1779-88. PubMed ID: 15174144 [TBL] [Abstract][Full Text] [Related]
7. Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis). Cavicchioli R; Ostrowski M; Fegatella F; Goodchild A; Guixa-Boixereu N Microb Ecol; 2003 Mar; 45(3):203-17. PubMed ID: 12632213 [TBL] [Abstract][Full Text] [Related]
8. Ribosomes exist in large excess over the apparent demand for protein synthesis during carbon starvation in marine Vibrio sp. strain CCUG 15956. Flärdh K; Cohen PS; Kjelleberg S J Bacteriol; 1992 Nov; 174(21):6780-8. PubMed ID: 1383195 [TBL] [Abstract][Full Text] [Related]
10. Responses to multiple-nutrient starvation in marine Vibrio sp. strain CCUG 15956. Nyström T; Flärdh K; Kjelleberg S J Bacteriol; 1990 Dec; 172(12):7085-97. PubMed ID: 1701428 [TBL] [Abstract][Full Text] [Related]
11. Global analysis of the carbon starvation response of a marine Vibrio species with disruptions in genes homologous to relA and spoT. Ostling J; Holmquist L; Kjelleberg S J Bacteriol; 1996 Aug; 178(16):4901-8. PubMed ID: 8759854 [TBL] [Abstract][Full Text] [Related]
12. Carbon and nitrogen substrate utilization in the marine bacterium Sphingopyxis alaskensis strain RB2256. Williams TJ; Ertan H; Ting L; Cavicchioli R ISME J; 2009 Sep; 3(9):1036-52. PubMed ID: 19458655 [TBL] [Abstract][Full Text] [Related]
13. [Oligotrophic bacteria and their applications in environmental science]. Zhang C; Huang L; Luan T; Lan C Ying Yong Sheng Tai Xue Bao; 2005 Apr; 16(4):773-7. PubMed ID: 16011186 [TBL] [Abstract][Full Text] [Related]
14. Extracellular signal molecule(s) involved in the carbon starvation response of marine Vibrio sp. strain S14. Srinivasan S; Ostling J; Charlton T; de Nys R; Takayama K; Kjelleberg S J Bacteriol; 1998 Jan; 180(2):201-9. PubMed ID: 9440506 [TBL] [Abstract][Full Text] [Related]
15. Survival, stress resistance, and alterations in protein expression in the marine vibrio sp. strain S14 during starvation for different individual nutrients. Nyström T; Olsson RM; Kjelleberg S Appl Environ Microbiol; 1992 Jan; 58(1):55-65. PubMed ID: 1371661 [TBL] [Abstract][Full Text] [Related]
16. Recovery from nutrient starvation by a marine Vibrio sp. Amy PS; Pauling C; Morita RY Appl Environ Microbiol; 1983 May; 45(5):1685-90. PubMed ID: 6191662 [TBL] [Abstract][Full Text] [Related]
17. Physiology and transcriptome of the polycyclic aromatic hydrocarbon-degrading Sphingomonas sp. LH128 after long-term starvation. Fida TT; Moreno-Forero SK; Heipieper HJ; Springael D Microbiology (Reading); 2013 Sep; 159(Pt 9):1807-1817. PubMed ID: 23861307 [TBL] [Abstract][Full Text] [Related]
18. Variations in rRNA content of marine Vibrio spp. during starvation-survival and recovery. Kramer JG; Singleton FL Appl Environ Microbiol; 1992 Jan; 58(1):201-7. PubMed ID: 1371659 [TBL] [Abstract][Full Text] [Related]
19. Evidence for a role of rpoE in stressed and unstressed cells of marine Vibrio angustum strain S14. Hild E; Takayama K; Olsson RM; Kjelleberg S J Bacteriol; 2000 Dec; 182(24):6964-74. PubMed ID: 11092857 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of membrane and periplasmic proteins during starvation of a marine Vibrio sp. Nyström T; Albertson N; Kjelleberg S J Gen Microbiol; 1988 Jun; 134(6):1645-51. PubMed ID: 3221201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]