BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 10788381)

  • 1. Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation.
    Puig S; Querol A; Barrio E; Pérez-Ortín JE
    Appl Environ Microbiol; 2000 May; 66(5):2057-61. PubMed ID: 10788381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic complexity and chromosomal rearrangements in wine-laboratory yeast hybrids.
    Ibeas JI; Jimenez J
    Curr Genet; 1996 Nov; 30(5):410-6. PubMed ID: 8929393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis of the karyotype instability in natural wine yeast strains.
    Carro D; Piña B
    Yeast; 2001 Dec; 18(16):1457-70. PubMed ID: 11748723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of homothallic Saccharomyces cerevisiae strain mating during must fermentation.
    Ambrona J; Ramírez M
    Appl Environ Microbiol; 2007 Apr; 73(8):2486-90. PubMed ID: 17322328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomal reorganization during meiosis of Saccharomyces cerevisiae baker's yeasts.
    Codón AC; Benítez T; Korhola M
    Curr Genet; 1997 Oct; 32(4):247-59. PubMed ID: 9342404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interspecies hybridization and recombination in Saccharomyces wine yeasts.
    Sipiczki M
    FEMS Yeast Res; 2008 Nov; 8(7):996-1007. PubMed ID: 18355270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are mitotic functions required in meiosis?
    Simchen G
    Genetics; 1974 Apr; 76(4):745-53. PubMed ID: 4599956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The baker's yeast diploid genome is remarkably stable in vegetative growth and meiosis.
    Nishant KT; Wei W; Mancera E; Argueso JL; Schlattl A; Delhomme N; Ma X; Bustamante CD; Korbel JO; Gu Z; Steinmetz LM; Alani E
    PLoS Genet; 2010 Sep; 6(9):e1001109. PubMed ID: 20838597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meiosis-specific formation of joint DNA molecules containing sequences from homologous chromosomes.
    Collins I; Newlon CS
    Cell; 1994 Jan; 76(1):65-75. PubMed ID: 8287480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and 'flor' film ageing of dry sherry-type wines.
    Guijo S; Mauricio JC; Salmon JM; Ortega JM
    Yeast; 1997 Feb; 13(2):101-17. PubMed ID: 9046092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meiotic chromosomal recombination defect in sake yeasts.
    Shimoi H; Hanazumi Y; Kawamura N; Yamada M; Shimizu S; Suzuki T; Watanabe D; Akao T
    J Biosci Bioeng; 2019 Feb; 127(2):190-196. PubMed ID: 30181034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SSP1, a gene necessary for proper completion of meiotic divisions and spore formation in Saccharomyces cerevisiae.
    Nag DK; Koonce MP; Axelrod J
    Mol Cell Biol; 1997 Dec; 17(12):7029-39. PubMed ID: 9372934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Karyotype rearrangements in a wine yeast strain by rad52-dependent and rad52-independent mechanisms.
    Carro D; Bartra E; Piña B
    Appl Environ Microbiol; 2003 Apr; 69(4):2161-5. PubMed ID: 12676696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome size-dependent control of meiotic recombination.
    Kaback DB; Guacci V; Barber D; Mahon JW
    Science; 1992 Apr; 256(5054):228-32. PubMed ID: 1566070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mating type and sporulation in yeast. II. Meiosis, recombination, and radiation sensitivity in an alpha-alpha diploid with altered sporulation control.
    Hopper AK; Kirsch J; Hall BD
    Genetics; 1975 May; 80(1):61-76. PubMed ID: 1093937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A RAD9-dependent checkpoint blocks meiosis of cdc13 yeast cells.
    Weber L; Byers B
    Genetics; 1992 May; 131(1):55-63. PubMed ID: 1592243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotypic and phenotypic evolution of yeast interspecies hybrids during high-sugar fermentation.
    Lopandic K; Pfliegler WP; Tiefenbrunner W; Gangl H; Sipiczki M; Sterflinger K
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6331-6343. PubMed ID: 27075738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and dynamics of the chromosomal complements of wild sparkling-wine yeast strains.
    Nadal D; Carro D; Fernández-Larrea J; Piña B
    Appl Environ Microbiol; 1999 Apr; 65(4):1688-95. PubMed ID: 10103269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic segregation of natural Saccharomyces cerevisiae strains derived from spontaneous fermentation of Aglianico wine.
    Sipiczki M; Romano P; Capece A; Paraggio M
    J Appl Microbiol; 2004; 96(5):1169-75. PubMed ID: 15078535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of industrial strains of Saccharomyces cerevisae during wine fermentation is affected by manipulation strategies based on sporulation.
    Gimren-Alcañiz JV; Matallana E
    Syst Appl Microbiol; 2001 Dec; 24(4):639-44. PubMed ID: 11876372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.