BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 10788848)

  • 1. Biomechanical evaluation of a new bone cement for use in vertebroplasty.
    Belkoff SM; Mathis JM; Erbe EM; Fenton DC
    Spine (Phila Pa 1976); 2000 May; 25(9):1061-4. PubMed ID: 10788848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures.
    Tohmeh AG; Mathis JM; Fenton DC; Levine AM; Belkoff SM
    Spine (Phila Pa 1976); 1999 Sep; 24(17):1772-6. PubMed ID: 10488505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty.
    Belkoff SM; Mathis JM; Jasper LE; Deramond H
    Spine (Phila Pa 1976); 2001 Jul; 26(14):1542-6. PubMed ID: 11462083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior.
    Belkoff SM; Mathis JM; Jasper LE; Deramond H
    Spine (Phila Pa 1976); 2001 Jul; 26(14):1537-41. PubMed ID: 11462082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro biomechanical evaluation of bone cements used in percutaneous vertebroplasty.
    Belkoff SM; Maroney M; Fenton DC; Mathis JM
    Bone; 1999 Aug; 25(2 Suppl):23S-26S. PubMed ID: 10458269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty.
    Lim TH; Brebach GT; Renner SM; Kim WJ; Kim JG; Lee RE; Andersson GB; An HS
    Spine (Phila Pa 1976); 2002 Jun; 27(12):1297-302. PubMed ID: 12065977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical comparison of kyphoplasty with different bone cements.
    Tomita S; Molloy S; Jasper LE; Abe M; Belkoff SM
    Spine (Phila Pa 1976); 2004 Jun; 29(11):1203-7. PubMed ID: 15167659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical evaluation of kyphoplasty and vertebroplasty with calcium phosphate cement in a simulated osteoporotic compression fracture.
    Tomita S; Kin A; Yazu M; Abe M
    J Orthop Sci; 2003; 8(2):192-7. PubMed ID: 12665956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical behavior of MRI-signal-inducing bone cements after vertebroplasty in osteoporotic vertebral bodies: An experimental cadaver study.
    Wichlas F; Trzenschik H; Tsitsilonis S; Rohlmann A; Bail HJ
    Clin Biomech (Bristol, Avon); 2014 May; 29(5):571-6. PubMed ID: 24703828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ex vivo biomechanical comparison of hydroxyapatite and polymethylmethacrylate cements for use with vertebroplasty.
    Belkoff SM; Mathis JM; Jasper LE
    AJNR Am J Neuroradiol; 2002; 23(10):1647-51. PubMed ID: 12427616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biomechanical study of vertebroplasty with geneX(®) cement augmentation in a calf osteoporotic vertebral compression fracture model].
    Zhang S; Jiang J; Zhu Q; Huang Z
    Nan Fang Yi Ke Da Xue Xue Bao; 2012 Jun; 32(6):843-6. PubMed ID: 22699067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical comparison of unipedicular versus bipedicular kyphoplasty.
    Steinmann J; Tingey CT; Cruz G; Dai Q
    Spine (Phila Pa 1976); 2005 Jan; 30(2):201-5. PubMed ID: 15644756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biomechanical investigation of vertebroplasty in osteoporotic compression fractures and in prophylactic vertebral reinforcement.
    Furtado N; Oakland RJ; Wilcox RK; Hall RM
    Spine (Phila Pa 1976); 2007 Aug; 32(17):E480-7. PubMed ID: 17762281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical comparison of transpedicular versus extrapedicular vertebroplasty using polymethylmethacrylate.
    Erkan S; Wu C; Mehbod AA; Cho W; Transfeldt EE
    J Spinal Disord Tech; 2010 May; 23(3):180-5. PubMed ID: 20065863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [CT-based analysis of cement distribution in unipedicular vertebroplasty].
    Walz M; Esmer E; Kolbow B
    Unfallchirurg; 2006 Nov; 109(11):932-9. PubMed ID: 17066292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model.
    Perry A; Mahar A; Massie J; Arrieta N; Garfin S; Kim C
    Spine J; 2005; 5(5):489-93. PubMed ID: 16153574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertebroplasty: only small cement volumes are required to normalize stress distributions on the vertebral bodies.
    Luo J; Daines L; Charalambous A; Adams MA; Annesley-Williams DJ; Dolan P
    Spine (Phila Pa 1976); 2009 Dec; 34(26):2865-73. PubMed ID: 20010394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical comparison of kyphoplasty versus a titanium mesh implant with cement for stabilization of vertebral compression fractures.
    Upasani VV; Robertson C; Lee D; Tomlinson T; Mahar AT
    Spine (Phila Pa 1976); 2010 Sep; 35(19):1783-8. PubMed ID: 20098352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cement augmentation on the spine : Biomechanical considerations].
    Kolb JP; Weiser L; Kueny RA; Huber G; Rueger JM; Lehmann W
    Orthopade; 2015 Sep; 44(9):672-680. PubMed ID: 26193968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertebral augmentation with a novel Vessel-X bone void filling container system and bioactive bone cement.
    Zheng Z; Luk KD; Kuang G; Li Z; Lin J; Lam WM; Cheung KM; Lu WW
    Spine (Phila Pa 1976); 2007 Sep; 32(19):2076-82. PubMed ID: 17762808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.