These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1078917)

  • 21. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Helicoids in the T system and striations of frog skeletal muscle fibers seen by high voltage electron microscopy.
    Peachey LD; Eisenberg BR
    Biophys J; 1978 May; 22(2):145-54. PubMed ID: 306839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sarcomere length and joint kinematics during torque production in frog hindlimb.
    Lieber RL; Boakes JL
    Am J Physiol; 1988 Jun; 254(6 Pt 1):C759-68. PubMed ID: 3259840
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatigue and metabolism of frog muscle fibers during stimulation and in response to caffeine.
    Nassar-Gentina V; Passonneau JV; Rapoport SI
    Am J Physiol; 1981 Sep; 241(3):C160-6. PubMed ID: 6974505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of lactate on intracellular pH and force recovery of fatigued sartorius muscles of the frog, Rana pipiens.
    Renaud JM
    J Physiol; 1989 Sep; 416():31-47. PubMed ID: 2607453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isotonic contraction of skinned muscle fibers on a slow time base: effects of ionic strength and calcium.
    Gulati J; Podolsky RJ
    J Gen Physiol; 1981 Sep; 78(3):233-57. PubMed ID: 6977015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myofibrillar M-band structure and composition of physiologically defined rat motor units.
    Thornell LE; Carlsson E; Kugelberg E; Grove BK
    Am J Physiol; 1987 Sep; 253(3 Pt 1):C456-68. PubMed ID: 3631252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of lanthanum on excitation-contraction coupling in frog skeletal muscle.
    Parry DJ; Kover A; Frank GB
    Can J Physiol Pharmacol; 1974 Dec; 52(6):1126-35. PubMed ID: 4548856
    [No Abstract]   [Full Text] [Related]  

  • 29. Denervated frog skeletal muscle. Some electrical and mechanical properties.
    Kotsias BA; Venosa RA; Horowicz P
    Pflugers Arch; 1984 Mar; 400(3):262-8. PubMed ID: 6610169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contrasting twitch and latency relaxation in skeletal muscle.
    Geddes LE; Mailman DS
    Comp Biochem Physiol A Comp Physiol; 1973 Mar; 44(3):693-710. PubMed ID: 4146619
    [No Abstract]   [Full Text] [Related]  

  • 31. Tension in skinned frog muscle fibers in solutions of varying ionic strength and neutral salt composition.
    Gordon AM; Godt RE; Donaldson SK; Harris CE
    J Gen Physiol; 1973 Nov; 62(5):550-74. PubMed ID: 4543066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A-band shortening in single fibers of frog skeletal muscle.
    Periasamy A; Burns DH; Holdren DN; Pollack GH; Trombitás K
    Biophys J; 1990 Apr; 57(4):815-28. PubMed ID: 2344466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The sarcomere length-tension relation in skeletal muscle.
    ter Keurs HE; Iwazumi T; Pollack GH
    J Gen Physiol; 1978 Oct; 72(4):565-92. PubMed ID: 309929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Graded activation of myofibrils and the effect of diameter on tension development during contractures in isolated skeletal muscle fibres.
    Gonzalez-serratos H
    J Physiol; 1975 Dec; 253(2):321-39. PubMed ID: 1082500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ionic strength and the contraction kinetics of skinned muscle fibers.
    Thames MD; Teichholz LE; Podolsky RJ
    J Gen Physiol; 1974 Apr; 63(4):509-30. PubMed ID: 4544880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphometry and histoenzymology of the hamster tenuissimus and its muscle spindles.
    Patten RM; Ovalle WK
    Anat Rec; 1992 Apr; 232(4):499-511. PubMed ID: 1532482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiology of the sternoradialis muscle: sexual dimorphism and role in amplexus in the Leopard frog (Rana pipiens).
    Kirby AC
    Comp Biochem Physiol A Comp Physiol; 1983; 74(3):705-9. PubMed ID: 6132715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proportions of slow-twitch and fast-twitch extrafusal fibers in receptive fields of tendon organs in chicken leg muscles.
    Maier A
    Anat Rec; 1998 Sep; 252(1):34-40. PubMed ID: 9737742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduced motor unit activation of muscle spindles and tendon organs in the immobilized cat hindlimb.
    Nordstrom MA; Enoka RM; Reinking RM; Callister RC; Stuart DG
    J Appl Physiol (1985); 1995 Mar; 78(3):901-13. PubMed ID: 7775335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphological and biochemical correlates of skeletal muscle contractility in the cat. I. Histochemical and electron microscopic studies.
    Van Winkle WB; Schwartz A
    J Cell Physiol; 1978 Oct; 97(1):99-119. PubMed ID: 711822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.