These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 10789425)

  • 1. A new approach to the study of ocular chromatic aberrations.
    Marcos S; Burns SA; Moreno-Barriusop E; Navarro R
    Vision Res; 1999 Oct; 39(26):4309-23. PubMed ID: 10789425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longitudinal chromatic aberration of the human infant eye.
    Wang J; Candy TR; Teel DF; Jacobs RJ
    J Opt Soc Am A Opt Image Sci Vis; 2008 Sep; 25(9):2263-70. PubMed ID: 18758552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.
    Zhai Y; Wang Y; Wang Z; Liu Y; Zhang L; He Y; Chang S
    Biomed Mater Eng; 2014; 24(6):3073-81. PubMed ID: 25227016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aberrations of the human eye in visible and near infrared illumination.
    Llorente L; Diaz-Santana L; Lara-Saucedo D; Marcos S
    Optom Vis Sci; 2003 Jan; 80(1):26-35. PubMed ID: 12553541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of just-noticeable differences for refractive errors and spherical aberration using visual simulation.
    Legras R; Chateau N; Charman WN
    Optom Vis Sci; 2004 Sep; 81(9):718-28. PubMed ID: 15365392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocular aberrations up to the infrared range: from 632.8 to 1070 nm.
    Fernández EJ; Artal P
    Opt Express; 2008 Dec; 16(26):21199-208. PubMed ID: 19104549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The optical transverse chromatic aberration on the fovea of the human eye.
    Simonet P; Campbell MC
    Vision Res; 1990; 30(2):187-206. PubMed ID: 2309454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo longitudinal chromatic aberration of pseudophakic eyes.
    Siedlecki D; Jóźwik A; Zając M; Hill-Bator A; Turno-Kręcicka A
    Optom Vis Sci; 2014 Feb; 91(2):240-6. PubMed ID: 24270638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing the effect of ocular aberrations in the perceived transverse chromatic aberration.
    Aissati S; Vinas M; Benedi-Garcia C; Dorronsoro C; Marcos S
    Biomed Opt Express; 2020 Aug; 11(8):4052-4068. PubMed ID: 32923028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the wave-front aberration of the eye by a fast psychophysical procedure.
    He JC; Marcos S; Webb RH; Burns SA
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2449-56. PubMed ID: 9729856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews.
    Gawne TJ; Siegwart JT; Ward AH; Norton TT
    Exp Eye Res; 2017 Feb; 155():75-84. PubMed ID: 27979713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spatially resolved refractometer.
    Burns SA
    J Refract Surg; 2000; 16(5):S566-9. PubMed ID: 11019874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences between wavefront and subjective refraction for infrared light.
    Teel DF; Jacobs RJ; Copland J; Neal DR; Thibos LN
    Optom Vis Sci; 2014 Oct; 91(10):1158-66. PubMed ID: 25148218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weighted Zernike expansion with applications to the optical aberration of the human eye.
    Nam J; Rubinstein J
    J Opt Soc Am A Opt Image Sci Vis; 2005 Sep; 22(9):1709-16. PubMed ID: 16211797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signals for defocus arise from longitudinal chromatic aberration in chick.
    Rucker FJ; Eskew RT; Taylor C
    Exp Eye Res; 2020 Sep; 198():108126. PubMed ID: 32717338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of Longitudinal Chromatic Aberration in the Last Crystalline Lens Surface Using Hartmann Test and Purkinje Images.
    Calderon-Uribe U; Hernandez-Gomez G; Gomez-Vieyra A
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of wave front refraction on pupil size due to the presence of higher order aberrations.
    Iseli HP; Bueeler M; Hafezi F; Seiler T; Mrochen M
    Eur J Ophthalmol; 2005; 15(6):680-7. PubMed ID: 16329051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory and measurement of ocular chromatic aberration.
    Thibos LN; Bradley A; Still DL; Zhang X; Howarth PA
    Vision Res; 1990; 30(1):33-49. PubMed ID: 2321365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monochromatic aberrations in the accommodated human eye.
    He JC; Burns SA; Marcos S
    Vision Res; 2000; 40(1):41-8. PubMed ID: 10768040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The statistics of refractive error maps: managing wavefront aberration analysis without Zernike polynomials.
    Iskander DR; Nam J; Thibos LN
    Ophthalmic Physiol Opt; 2009 May; 29(3):292-9. PubMed ID: 19422561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.