These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10790026)

  • 21. Measurement of sound pressure and temperature in tissue-mimicking material using an optical fiber Bragg grating sensor.
    Imade K; Kageyama T; Koyama D; Watanabe Y; Nakamura K; Akiyama I
    J Med Ultrason (2001); 2016 Oct; 43(4):473-9. PubMed ID: 27334036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measurement of low-frequency ultrasonic wave in water using an acoustic fiber sensor.
    Sakoda T; Sonoda Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):761-7. PubMed ID: 16615580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrophone spatial averaging corrections from 1 to 40 MHz.
    Radulescu EG; Lewin PA; Goldstein A; Nowicki A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1575-80. PubMed ID: 11800120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time delay spectrometry for hydrophone calibrations below 1 MHz.
    Gammell PM; Harris GR
    J Acoust Soc Am; 1999 Nov; 106(5):L41-6. PubMed ID: 10573913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of a fibre-optic hydrophone in measuring acoustic parameters of high power hyperthermia transducers.
    Chan HL; Chiang KS; Price DC; Gardner JL; Brinch J
    Phys Med Biol; 1989 Nov; 34(11):1609-22. PubMed ID: 2587628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Miniature photonic-crystal hydrophone optimized for ocean acoustics.
    Kilic O; Digonnet MJ; Kino GS; Solgaard O
    J Acoust Soc Am; 2011 Apr; 129(4):1837-50. PubMed ID: 21476640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA
    Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Innovative Fiber-Optic Hydrophone for Seismology: Testing Detection Capacity for Very Low-Energy Earthquakes.
    Guardato S; Riccio R; Janneh M; Bruno FA; Pisco M; Cusano A; Iannaccone G
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of a fiber-optic displacement sensor for measurements in high-intensity focused ultrasound fields.
    Haller J; Wilkens V; Jenderka KV; Koch C
    J Acoust Soc Am; 2011 Jun; 129(6):3676-81. PubMed ID: 21682392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impedance of pistons on a two-layer medium in a planar infinite rigid baffle.
    Hassan SE
    J Acoust Soc Am; 2007 Jul; 122(1):237-46. PubMed ID: 17614483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane hydrophone phase characteristics through nonlinear acoustics measurements.
    Bloomfield PE; Gandhi G; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2418-37. PubMed ID: 22083775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequency response of fiber-optic multilayer hydrophones: experimental investigation and finite element simulation.
    Weise W; Wilken V; Koch C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jul; 49(7):937-46. PubMed ID: 12152948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Backscattering cross section of a rigid biconic reflector.
    Eisler TJ
    J Acoust Soc Am; 2000 Oct; 108(4):1474-9. PubMed ID: 11051473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of sound field in cavitating media by an optical fibre-tip hydrophone.
    Koch C; Jenderka KV
    Ultrason Sonochem; 2008 Apr; 15(4):502-509. PubMed ID: 17644460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones.
    Beard PC; Hurrell AM; Mills TN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):256-64. PubMed ID: 18238538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Comparison of Different Calibration Techniques for Hydrophones Used in Medical Ultrasonic Field Measurement.
    Weber M; Wilkens V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1919-1929. PubMed ID: 33360988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Opto-acoustic behavior of coated fiber Bragg gratings.
    Moccia M; Pisco M; Cutolo A; Galdi V; Bevilacqua P; Cusano A
    Opt Express; 2011 Sep; 19(20):18842-60. PubMed ID: 21996827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the shock pulse-induced cavitation bubble activities recorded by an optical fiber hydrophone.
    Kang G; Cho SC; Coleman AJ; Choi MJ
    J Acoust Soc Am; 2014 Mar; 135(3):1139-48. PubMed ID: 24606257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of high intensity focused ultrasound fields by a fiber optic probe hydrophone.
    Zhou Y; Zhai L; Simmons R; Zhong P
    J Acoust Soc Am; 2006 Aug; 120(2):676-85. PubMed ID: 16938956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Angular influence on the scattering of fundamental shear horizontal guided waves by a through-thickness crack in an isotropic plate.
    Rajagopal P; Lowe MJ
    J Acoust Soc Am; 2008 Oct; 124(4):2021-30. PubMed ID: 19062842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.