BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 10790155)

  • 41. Galphai3 primes the G protein-activated K+ channels for activation by coexpressed Gbetagamma in intact Xenopus oocytes.
    Rubinstein M; Peleg S; Berlin S; Brass D; Dascal N
    J Physiol; 2007 May; 581(Pt 1):17-32. PubMed ID: 17289785
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activation and inhibition of G protein-coupled inwardly rectifying potassium (Kir3) channels by G protein beta gamma subunits.
    Lei Q; Jones MB; Talley EM; Schrier AD; McIntire WE; Garrison JC; Bayliss DA
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9771-6. PubMed ID: 10944236
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ATP-dependent regulation of a G protein-coupled K+ channel (GIRK1/GIRK4) expressed in oocytes.
    Kim D; Watson M; Indyk V
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H195-206. PubMed ID: 9038938
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Quantitative Model of the GIRK1/2 Channel Reveals That Its Basal and Evoked Activities Are Controlled by Unequal Stoichiometry of Gα and Gβγ.
    Yakubovich D; Berlin S; Kahanovitch U; Rubinstein M; Farhy-Tselnicker I; Styr B; Keren-Raifman T; Dessauer CW; Dascal N
    PLoS Comput Biol; 2015 Nov; 11(11):e1004598. PubMed ID: 26544551
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes.
    Hedin KE; Lim NF; Clapham DE
    Neuron; 1996 Feb; 16(2):423-9. PubMed ID: 8789957
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins.
    Krapivinsky G; Gordon EA; Wickman K; Velimirović B; Krapivinsky L; Clapham DE
    Nature; 1995 Mar; 374(6518):135-41. PubMed ID: 7877685
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GIRK4 confers appropriate processing and cell surface localization to G-protein-gated potassium channels.
    Kennedy ME; Nemec J; Corey S; Wickman K; Clapham DE
    J Biol Chem; 1999 Jan; 274(4):2571-82. PubMed ID: 9891030
    [TBL] [Abstract][Full Text] [Related]  

  • 48. G-protein mediated gating of inward-rectifier K+ channels.
    Mark MD; Herlitze S
    Eur J Biochem; 2000 Oct; 267(19):5830-6. PubMed ID: 10998041
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Defective gamma-aminobutyric acid type B receptor-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from weaver and Girk2 null mutant mice.
    Slesinger PA; Stoffel M; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):12210-7. PubMed ID: 9342388
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Binding of the G protein betagamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels.
    Huang CL; Jan YN; Jan LY
    FEBS Lett; 1997 Apr; 405(3):291-8. PubMed ID: 9108307
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cloning and expression of a G protein-linked acetylcholine receptor from Caenorhabditis elegans.
    Lee YS; Park YS; Chang DJ; Hwang JM; Min CK; Kaang BK; Cho NJ
    J Neurochem; 1999 Jan; 72(1):58-65. PubMed ID: 9886054
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Basal activity of GIRK5 isoforms.
    Salvador C; Mora SI; Ordaz B; Antaramian A; Vaca L; Escobar LI
    Life Sci; 2003 Feb; 72(13):1509-18. PubMed ID: 12535718
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma.
    Huang CL; Feng S; Hilgemann DW
    Nature; 1998 Feb; 391(6669):803-6. PubMed ID: 9486652
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coupling of rat somatostatin receptor subtypes to a G-protein gated inwardly rectifying potassium channel (GIRK1).
    Kreienkamp HJ; Hönck HH; Richter D
    FEBS Lett; 1997 Dec; 419(1):92-4. PubMed ID: 9426226
    [TBL] [Abstract][Full Text] [Related]  

  • 55. G alpha(i) and G betagamma jointly regulate the conformations of a G betagamma effector, the neuronal G protein-activated K+ channel (GIRK).
    Berlin S; Keren-Raifman T; Castel R; Rubinstein M; Dessauer CW; Ivanina T; Dascal N
    J Biol Chem; 2010 Feb; 285(9):6179-85. PubMed ID: 20018875
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ethanol opens G-protein-activated inwardly rectifying K+ channels.
    Kobayashi T; Ikeda K; Kojima H; Niki H; Yano R; Yoshioka T; Kumanishi T
    Nat Neurosci; 1999 Dec; 2(12):1091-7. PubMed ID: 10570486
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Asymmetrical contributions of subunit pore regions to ion selectivity in an inward rectifier K+ channel.
    Silverman SK; Lester HA; Dougherty DA
    Biophys J; 1998 Sep; 75(3):1330-9. PubMed ID: 9726934
    [TBL] [Abstract][Full Text] [Related]  

  • 58. G protein-independent inhibition of GIRK current by adenosine in rat atrial myocytes overexpressing A1 receptors after adenovirus-mediated gene transfer.
    Bösche LI; Wellner-Kienitz MC; Bender K; Pott L
    J Physiol; 2003 Aug; 550(Pt 3):707-17. PubMed ID: 12815176
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The cardiac acetylcholine-activated, inwardly rectifying K+-channel subunit GIRK1 gives rise to an inward current induced by free oxygen radicals.
    Jeglitsch G; Ramos P; Encabo A; Tritthart HA; Esterbauer H; Groschner K; Schreibmayer W
    Free Radic Biol Med; 1999 Feb; 26(3-4):253-9. PubMed ID: 9895214
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of the inward rectifying properties of G-protein-activated inwardly rectifying K+ (GIRK) channels by Gbeta gamma subunits.
    Hommers LG; Lohse MJ; Bünemann M
    J Biol Chem; 2003 Jan; 278(2):1037-43. PubMed ID: 12403784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.