BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 10790289)

  • 1. Exposure to low-frequency electromagnetic fields does not alter HSP70 expression or HSF-HSE binding in HL60 cells.
    Morehouse CA; Owen RD
    Radiat Res; 2000 May; 153(5 Pt 2):658-62. PubMed ID: 10790289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression analysis of human HL60 cells exposed to 60 Hz square- or sine-wave magnetic fields.
    Balcer-Kubiczek EK; Harrison GH; Davis CC; Haas ML; Koffman BH
    Radiat Res; 2000 May; 153(5 Pt 2):670-8. PubMed ID: 10790291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic field activation of protein-DNA binding.
    Lin H; Han L; Blank M; Head M; Goodman R
    J Cell Biochem; 1998 Sep; 70(3):297-303. PubMed ID: 9706866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myc-mediated transactivation of HSP70 expression following exposure to magnetic fields.
    Lin H; Head M; Blank M; Han L; Jin M; Goodman R
    J Cell Biochem; 1998 May; 69(2):181-8. PubMed ID: 9548565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes.
    Gordon S; Bharadwaj S; Hnatov A; Ali A; Ovsenek N
    Dev Biol; 1997 Jan; 181(1):47-63. PubMed ID: 9015264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure of Daudi cells to low-frequency magnetic fields does not elevate MYC steady-state mRNA levels.
    Morehouse CA; Owen RD
    Radiat Res; 2000 May; 153(5 Pt 2):663-9. PubMed ID: 10790290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of quercetin-induced suppression and delay of heat shock gene expression and thermotolerance development in HT-29 cells.
    Lee YJ; Erdos G; Hou ZZ; Kim SH; Kim JH; Cho JM; Corry PM
    Mol Cell Biochem; 1994 Aug; 137(2):141-54. PubMed ID: 7845388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromagnetic field exposure induces rapid, transitory heat shock factor activation in human cells.
    Lin H; Opler M; Head M; Blank M; Goodman R
    J Cell Biochem; 1997 Sep; 66(4):482-8. PubMed ID: 9282326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased levels of inducible HSP70 in cells exposed to electromagnetic fields.
    Alfieri RR; Bonelli MA; Pedrazzi G; Desenzani S; Ghillani M; Fumarola C; Ghibelli L; Borghetti AF; Petronini PG
    Radiat Res; 2006 Jan; 165(1):95-104. PubMed ID: 16392967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A magnetic field-responsive domain in the human HSP70 promoter.
    Lin H; Blank M; Goodman R
    J Cell Biochem; 1999 Oct; 75(1):170-6. PubMed ID: 10462715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphism in the regulatory sequence of the human hsp70-1 gene does not affect heat shock factor binding or heat shock protein synthesis.
    Favatier F; Jacquier-Sarlin MR; Swierczewski E; Polla BS
    Cell Mol Life Sci; 1999 Nov; 56(7-8):701-8. PubMed ID: 11212316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential activation of HSF-binding activity and hsp70 gene expression in Xenopus heart after mild hyperthermia.
    Ali A; Fernando P; Smith WL; Ovsenek N; Lepock JR; Heikkila JJ
    Cell Stress Chaperones; 1997 Dec; 2(4):229-37. PubMed ID: 9495280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana.
    Lee JH; Schöffl F
    Mol Gen Genet; 1996 Aug; 252(1-2):11-9. PubMed ID: 8804399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic electromagnetic field exposure decreases HSP70 levels and lowers cytoprotection.
    Di Carlo A; White N; Guo F; Garrett P; Litovitz T
    J Cell Biochem; 2002; 84(3):447-54. PubMed ID: 11813250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the involvement of mouse heat shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation.
    Christians E; Michel E; Adenot P; Mezger V; Rallu M; Morange M; Renard JP
    Mol Cell Biol; 1997 Feb; 17(2):778-88. PubMed ID: 9001232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of 50 Hz electromagnetic fields on the induction of heat-shock protein gene expression in human leukocytes.
    Coulton LA; Harris PA; Barker AT; Pockley AG
    Radiat Res; 2004 Apr; 161(4):430-4. PubMed ID: 15038769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of heat shock factor and heat shock protein 70 genes during maize pollen development.
    Gagliardi D; Breton C; Chaboud A; Vergne P; Dumas C
    Plant Mol Biol; 1995 Nov; 29(4):841-56. PubMed ID: 8541509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. No effect of 60 Hz electromagnetic fields on MYC or beta-actin expression in human leukemic cells.
    Lacy-Hulbert A; Wilkins RC; Hesketh TR; Metcalfe JC
    Radiat Res; 1995 Oct; 144(1):9-17. PubMed ID: 7568776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posttranslational modifications in histones underlie heat acclimation-mediated cytoprotective memory.
    Tetievsky A; Horowitz M
    J Appl Physiol (1985); 2010 Nov; 109(5):1552-61. PubMed ID: 20813976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The expression of heat shock protein 70 decreases with age in lymphocytes from rats and rhesus monkeys.
    Pahlavani MA; Harris MD; Moore SA; Weindruch R; Richardson A
    Exp Cell Res; 1995 May; 218(1):310-8. PubMed ID: 7737368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.