BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 10790328)

  • 1. An essential role of the neuronal cell adhesion molecule contactin in development of the Xenopus primary sensory system.
    Fujita N; Saito R; Watanabe K; Nagata S
    Dev Biol; 2000 May; 221(2):308-20. PubMed ID: 10790328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repulsive guidance of axons of spinal sensory neurons in Xenopus laevis embryos: roles of Contactin and notochord-derived chondroitin sulfate proteoglycans.
    Fujita N; Nagata S
    Dev Growth Differ; 2005 Sep; 47(7):445-56. PubMed ID: 16179071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of Fyn tyrosine kinase causes abnormal development of primary sensory neurons in Xenopus laevis embryos.
    Saito R; Fujita N; Nagata S
    Dev Growth Differ; 2001 Jun; 43(3):229-38. PubMed ID: 11422288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contactin 1 knockdown in the hindbrain induces abnormal development of the trigeminal sensory nerve in Xenopus embryos.
    Fujita N; Nagata S
    Dev Genes Evol; 2007 Oct; 217(10):709-13. PubMed ID: 17891416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of substance P-like immunoreactivity in Xenopus embryos.
    Gallagher BC; Moody SA
    J Comp Neurol; 1987 Jun; 260(2):175-85. PubMed ID: 2440913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contactin1a expression is associated with oligodendrocyte differentiation and axonal regeneration in the central nervous system of zebrafish.
    Schweitzer J; Gimnopoulos D; Lieberoth BC; Pogoda HM; Feldner J; Ebert A; Schachner M; Becker T; Becker CG
    Mol Cell Neurosci; 2007 Jun; 35(2):194-207. PubMed ID: 17425960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zebrafish neurons express two L1-related molecules during early axonogenesis.
    Tongiorgi E; Bernhardt RR; Schachner M
    J Neurosci Res; 1995 Nov; 42(4):547-61. PubMed ID: 8568941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disappearance of Rohon-Beard neurons from the spinal cord of larval Xenopus laevis.
    Lamborghini JE
    J Comp Neurol; 1987 Oct; 264(1):47-55. PubMed ID: 3680623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contactin regulates the current density and axonal expression of tetrodotoxin-resistant but not tetrodotoxin-sensitive sodium channels in DRG neurons.
    Rush AM; Craner MJ; Kageyama T; Dib-Hajj SD; Waxman SG; Ranscht B
    Eur J Neurosci; 2005 Jul; 22(1):39-49. PubMed ID: 16029194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro studies of growth cone behavior support a role for fasciculation mediated by cell adhesion molecules in sensory axon guidance during development.
    Honig MG; Petersen GG; Rutishauser US; Camilli SJ
    Dev Biol; 1998 Dec; 204(2):317-26. PubMed ID: 9882473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved and divergent patterns of Reelin expression in the zebrafish central nervous system.
    Costagli A; Kapsimali M; Wilson SW; Mione M
    J Comp Neurol; 2002 Aug; 450(1):73-93. PubMed ID: 12124768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal and glial expression of the adhesion molecule TAG-1 is regulated after peripheral nerve lesion or central neurodegeneration of adult nervous system.
    Soares S; Traka M; von Boxberg Y; Bouquet C; Karagogeos D; Nothias F
    Eur J Neurosci; 2005 Mar; 21(5):1169-80. PubMed ID: 15813926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental, molecular, and genetic dissection of INa in vivo in embryonic zebrafish sensory neurons.
    Pineda RH; Heiser RA; Ribera AB
    J Neurophysiol; 2005 Jun; 93(6):3582-93. PubMed ID: 15673553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A contactin-receptor-like protein tyrosine phosphatase beta complex mediates adhesive communication between astroglial cells and gonadotrophin-releasing hormone neurones.
    Parent AS; Mungenast AE; Lomniczi A; Sandau US; Peles E; Bosch MA; Rønnekleiv OK; Ojeda SR
    J Neuroendocrinol; 2007 Nov; 19(11):847-59. PubMed ID: 17927663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of neurogenin-1 expression by sonic hedgehog: Its role in development of trigeminal sensory neurons.
    Ota M; Ito K
    Dev Dyn; 2003 Aug; 227(4):544-51. PubMed ID: 12889063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth cones and the formation of central and peripheral neurites by sensory neurones in amphibian embryos.
    Roberts A; Patton DT
    J Neurosci Res; 1985; 13(1-2):23-38. PubMed ID: 3871863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The early development of the primary sensory neurones in an amphibian embryo: a scanning electron microscope study.
    Taylor JS; Roberts A
    J Embryol Exp Morphol; 1983 Jun; 75():49-66. PubMed ID: 6886616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in the Drosophila neuroglian cell adhesion molecule affect motor neuron pathfinding and peripheral nervous system patterning.
    Hall SG; Bieber AJ
    J Neurobiol; 1997 Mar; 32(3):325-40. PubMed ID: 9058324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early pattern of neuronal differentiation in the Xenopus embryonic brainstem and spinal cord.
    Hartenstein V
    J Comp Neurol; 1993 Feb; 328(2):213-31. PubMed ID: 8423241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a cell-specific action of Reelin in the spinal cord.
    Phelps PE; Rich R; Dupuy-Davies S; Ríos Y; Wong T
    Dev Biol; 2002 Apr; 244(1):180-98. PubMed ID: 11900467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.