These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 10790332)
1. Larval antigen molecules recognized by adult immune cells of inbred Xenopus laevis: two pathways for recognition by adult splenic T cells. Izutsu Y; Tochinai S; Iwabuchi K; Onoè K Dev Biol; 2000 May; 221(2):365-74. PubMed ID: 10790332 [TBL] [Abstract][Full Text] [Related]
2. Adult-type splenocytes of Xenopus induce apoptosis of histocompatible larval tail cells in vitro. Izutsu Y; Yoshizato K; Tochinai S Differentiation; 1996 Sep; 60(5):277-86. PubMed ID: 8855371 [TBL] [Abstract][Full Text] [Related]
3. Metamorphosis-dependent recognition of larval skin as non-self by inbred adult frogs (Xenopus laevis). Izutsu Y; Yoshizato K J Exp Zool; 1993 Jun; 266(2):163-7. PubMed ID: 8501439 [TBL] [Abstract][Full Text] [Related]
4. Induction of T cell differentiation in early-thymectomized Xenopus by grafting adult thymuses from either MHC-matched or from partially or totally MHC-mismatched donors. Nagata S; Cohen N Thymus; 1984; 6(1-2):89-103. PubMed ID: 6235645 [TBL] [Abstract][Full Text] [Related]
5. Ontogeny of the alloimmune response against a transplanted tumor in Xenopus laevis. Robert J; Guiet C; Du Pasquier L Differentiation; 1995 Oct; 59(3):135-44. PubMed ID: 7589897 [TBL] [Abstract][Full Text] [Related]
6. Major histocompatibility complex-encoded class I molecules are absent in immunologically competent Xenopus before metamorphosis. Flajnik MF; Kaufman JF; Hsu E; Manes M; Parisot R; Du Pasquier L J Immunol; 1986 Dec; 137(12):3891-9. PubMed ID: 3537126 [TBL] [Abstract][Full Text] [Related]
7. Molecular mechanism and evolutional significance of epithelial-mesenchymal interactions in the body- and tail-dependent metamorphic transformation of anuran larval skin. Yoshizato K Int Rev Cytol; 2007; 260():213-60. PubMed ID: 17482907 [TBL] [Abstract][Full Text] [Related]
8. Late thymectomy in Xenopus tadpoles reveals a population of T cells that persists through metamorphosis. Rollins-Smith LA; Needham DA; Davis AT; Blair PJ Dev Comp Immunol; 1996; 20(3):165-74. PubMed ID: 8955591 [TBL] [Abstract][Full Text] [Related]
9. Expression of class II major histocompatibility complex antigens on adult T cells in Xenopus is metamorphosis-dependent. Rollins-Smith LA; Blair P Dev Immunol; 1990; 1(2):97-104. PubMed ID: 1967017 [TBL] [Abstract][Full Text] [Related]
10. Cells of cutaneous immunity in Xenopus: studies during larval development and limb regeneration. Mescher AL; Wolf WL; Moseman EA; Hartman B; Harrison C; Nguyen E; Neff AW Dev Comp Immunol; 2007; 31(4):383-93. PubMed ID: 16926047 [TBL] [Abstract][Full Text] [Related]
11. [Cloning of Xenopus laevis major histocompatibility complex class II beta-chain genes]. Sato K; Katagiri M Hokkaido Igaku Zasshi; 1994 Mar; 69(2):202-16. PubMed ID: 8157247 [TBL] [Abstract][Full Text] [Related]
12. Conversion of red blood cells (RBCs) from the larval to the adult type during metamorphosis in Xenopus: specific removal of mature larval-type RBCs by apoptosis. Tamori Y; Wakahara M Int J Dev Biol; 2000 Jun; 44(4):373-80. PubMed ID: 10949046 [TBL] [Abstract][Full Text] [Related]
13. Immune selection in murine tumors. Ph.d thesis. Svane IM; Engel AM APMIS Suppl; 2003; (106):1-46. PubMed ID: 12739251 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of the antigen presenting cell in rat autoimmune myocarditis: evidence of bone marrow derivation and non-requirement for MHC class I compatibility with pathogenic T cells. Ratcliffe NR; Wegmann KW; Zhao RW; Hickey WF J Autoimmun; 2000 Nov; 15(3):369-79. PubMed ID: 11040077 [TBL] [Abstract][Full Text] [Related]
15. In vitro studies of spontaneous and corticosteroid-induced apoptosis of lymphocyte populations from metamorphosing frogs/RU486 inhibition. Barker KS; Davis AT; Li B; Rollins-Smith LA Brain Behav Immun; 1997 Jun; 11(2):119-31. PubMed ID: 9299061 [TBL] [Abstract][Full Text] [Related]
16. Expression of costimulatory molecules on human retinoblastoma cells Y-79: functional expression of CD40 and B7H1. Usui Y; Okunuki Y; Hattori T; Takeuchi M; Kezuka T; Goto H; Usui M Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4607-13. PubMed ID: 17003458 [TBL] [Abstract][Full Text] [Related]
17. Larval-to-adult conversion of a myogenic system in the frog, Xenopus laevis, by larval-type myoblast-specific control of cell division, cell differentiation, and programmed cell death by triiodo-L-thyronine. Shibota Y; Kaneko Y; Kuroda M; Nishikawa A Differentiation; 2000 Dec; 66(4-5):227-38. PubMed ID: 11269949 [TBL] [Abstract][Full Text] [Related]
18. The effect of co-expression costimulatory molecule CD80 on uptake of antigen peptide-MHC class I-GFP complex by specific T cells. Liu X; Zhang L; Zhang X; Yu H; Zhao X; Lu J; Qian G; Ge S Int J Oncol; 2007 Jun; 30(6):1389-96. PubMed ID: 17487359 [TBL] [Abstract][Full Text] [Related]
19. MHC class I antigens as surface markers of adult erythrocytes during the metamorphosis of Xenopus. Flajnik MF; Du Pasquier L Dev Biol; 1988 Jul; 128(1):198-206. PubMed ID: 3384174 [TBL] [Abstract][Full Text] [Related]
20. MHC class II presentation of endogenously expressed antigens by transfected dendritic cells. Diebold SS; Cotten M; Koch N; Zenke M Gene Ther; 2001 Mar; 8(6):487-93. PubMed ID: 11313828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]