BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 10790502)

  • 21. Mercury distribution in sediments and bioaccumulation by fish in two oregon reservoirs: point-source and nonpoint-source impacted systems.
    Park J; Curtis LR
    Arch Environ Contam Toxicol; 1997 Nov; 33(4):423-9. PubMed ID: 9419261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ecological risk of methylmercury to piscivorous fish of the Great Lakes region.
    Sandheinrich MB; Bhavsar SP; Bodaly RA; Drevnick PE; Paul EA
    Ecotoxicology; 2011 Oct; 20(7):1577-87. PubMed ID: 21691859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury accumulation by largemouth bass (Micropterus salmoides) in recently impounded reservoirs.
    Abernathy AR; Cumbie PM
    Bull Environ Contam Toxicol; 1977 May; 17(5):595-602. PubMed ID: 861413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methylmercury in freshwater fish linked to atmospheric mercury deposition.
    Hammerschmid CR; Fitzgerald WF
    Environ Sci Technol; 2006 Dec; 40(24):7764-70. PubMed ID: 17256525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mercury concentrations in fish from Lake Mead, USA, related to fish size, condition, trophic level, location, and consumption risk.
    Cizdziel JV; Hinners TA; Pollard JE; Heithmar EM; Cross CL
    Arch Environ Contam Toxicol; 2002 Oct; 43(3):309-17. PubMed ID: 12202927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variations in PCB concentrations between genders of six warmwater fish species in Lake Logan Martin, Alabama, USA.
    Rypel AL; Findlay RH; Mitchell JB; Bayne DR
    Chemosphere; 2007 Aug; 68(9):1707-15. PubMed ID: 17490714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mercury concentrations in fish from Lake Meredith, Texas: implications for the issuance of fish consumption advisories.
    McClain WC; Chumchal MM; Drenner RW; Newland LW
    Environ Monit Assess; 2006 Dec; 123(1-3):249-58. PubMed ID: 17054010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mercury speciation and biomagnification in the food web of Caddo Lake, Texas and Louisiana, USA, a subtropical freshwater ecosystem.
    Chumchal MM; Rainwater TR; Osborn SC; Roberts AP; Abel MT; Cobb GP; Smith PN; Bailey FC
    Environ Toxicol Chem; 2011 May; 30(5):1153-62. PubMed ID: 21305578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mercury concentrations in pond fish in relation to a coal-fired power plant.
    Pinkney AE; Logan DT; Wilson HT
    Arch Environ Contam Toxicol; 1997 Aug; 33(2):222-9. PubMed ID: 9294253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selenium, Mercury, and Their Molar Ratio in Sportfish from Drinking Water Reservoirs.
    Johnson TKB; LePrevost CE; Kwak TJ; Cope WG
    Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30158428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of mercury in the tissues of five species of freshwater fish from Lake Mead, USA.
    Cizdziel J; Hinners T; Cross C; Pollard J
    J Environ Monit; 2003 Oct; 5(5):802-7. PubMed ID: 14587853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of fish length on tissue mercury dynamics: implications for natural resource management and human health risk.
    Sackett DK; Cope WG; Rice JA; Aday DD
    Int J Environ Res Public Health; 2013 Feb; 10(2):638-59. PubMed ID: 23388852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of the spatiotemporal trends of mercury in Lake Erie fish communities: a Bayesian approach.
    Azim ME; Kumarappah A; Bhavsar SP; Backus SM; Arhonditsis G
    Environ Sci Technol; 2011 Mar; 45(6):2217-26. PubMed ID: 21329342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fish tissue quality in the lower Mississippi River and health risks from fish consumption.
    Watanabe KH; Desimone FW; Thiyagarajah A; Hartley WR; Hindrichs AE
    Sci Total Environ; 2003 Jan; 302(1-3):109-26. PubMed ID: 12526903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lake variability: key factors controlling mercury concentrations in New York State fish.
    Simonin HA; Loukmas JJ; Skinner LC; Roy KM
    Environ Pollut; 2008 Jul; 154(1):107-15. PubMed ID: 18262697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical contaminants, health indicators, and reproductive biomarker responses in fish from the Colorado River and its tributaries.
    Hinck JE; Blazer VS; Denslow ND; Echols KR; Gross TS; May TW; Anderson PJ; Coyle JJ; Tillitt DE
    Sci Total Environ; 2007 Jun; 378(3):376-402. PubMed ID: 17418376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Locational differences in mercury and selenium levels in 19 species of saltwater fish from New Jersey.
    Burger J; Jeitner C; Gochfeld M
    J Toxicol Environ Health A; 2011; 74(13):863-74. PubMed ID: 21598171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial variability in the speciation and bioaccumulation of mercury in an arid subtropical reservoir ecosystem.
    Becker JC; Groeger AW; Nowlin WH; Chumchal MM; Hahn D
    Environ Toxicol Chem; 2011 Oct; 30(10):2300-11. PubMed ID: 21769922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A case study and a meta-analysis of seasonal variation in fish mercury concentrations.
    Mills N; Cashatt D; Weber MJ; Pierce CL
    Ecotoxicology; 2018 Aug; 27(6):641-649. PubMed ID: 29748828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maternally transferred mercury in wild largemouth bass, Micropterus salmoides.
    Sackett DK; Aday DD; Rice JA; Cope WG
    Environ Pollut; 2013 Jul; 178():493-7. PubMed ID: 23597802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.