These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 10790896)

  • 21. GABAergic inhibition shapes frequency tuning and modifies response properties in the superior olivary nucleus of the leopard frog.
    Zheng W; Hall JC
    J Comp Physiol A; 2000; 186(7-8):661-71. PubMed ID: 11016782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laminar analysis of inhibition in the gerbil primary auditory cortex.
    Foeller E; Vater M; Kössl M
    J Assoc Res Otolaryngol; 2001 Sep; 2(3):279-96. PubMed ID: 11669400
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cross-modal plasticity results in increased inhibition in primary auditory cortical areas.
    Mao YT; Pallas SL
    Neural Plast; 2013; 2013():530651. PubMed ID: 24288625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of GABA-mediated inhibition on direction-dependent frequency tuning in the frog inferior colliculus.
    Zhang H; Xu J; Feng AS
    J Comp Physiol A; 1999 Jan; 184(1):85-98. PubMed ID: 10077865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GABAA receptor antagonist bicuculline alters response properties of posteroventral cochlear nucleus neurons.
    Palombi PS; Caspary DM
    J Neurophysiol; 1992 Mar; 67(3):738-46. PubMed ID: 1315848
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The roles of local inhibition mediated by gamma-aminobutyric acid (GABA)-A receptor in duration tuning in the inferior colliculus of guinea pigs.
    Yin S; Chen Z; Feng Y; Wang J
    Acta Otolaryngol; 2008 Oct; 128(10):1101-9. PubMed ID: 18607920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction between excitation and inhibition affects frequency tuning curve, response size and latency of neurons in the auditory cortex of the big brown bat, Eptesicus fuscus.
    Jen PH; Chen QC; Wu FJ
    Hear Res; 2002 Dec; 174(1-2):281-9. PubMed ID: 12433418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of receptive field expansion produced by GABA(B) and GABA(A) receptor antagonists in raccoon primary somatosensory cortex.
    Chowdhury SA; Rasmusson DD
    Exp Brain Res; 2002 May; 144(1):114-21. PubMed ID: 11976765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of noradrenaline on rate-level function of auditory cortex neurons: is there a "gating" effect of noradrenaline?
    Manunta Y; Edeline JM
    Exp Brain Res; 1998 Feb; 118(3):361-72. PubMed ID: 9497143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preceding weak noise sharpens the frequency tuning and elevates the response threshold of the mouse inferior collicular neurons through GABAergic inhibition.
    Wang X; Jen PH; Wu FJ; Chen QC
    Brain Res; 2007 Sep; 1167():80-91. PubMed ID: 17689505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of GABAergic inhibition in the coding of interaural time differences of low-frequency sounds in the inferior colliculus.
    D'Angelo WR; Sterbing SJ; Ostapoff EM; Kuwada S
    J Neurophysiol; 2005 Jun; 93(6):3390-400. PubMed ID: 15647399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GABA mediaties the inhibitory effect of lateral amygdaloid nucleus stimulation on the acoustic response of neurons in A I cortex: An in vivo microiontophoretic study.
    He DF; Chen FJ; Zhou SC
    Sheng Li Xue Bao; 2004 Jun; 56(3):374-8. PubMed ID: 15224153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reorganization of the cochleotopic map in the bat's auditory system by inhibition.
    Xiao Z; Suga N
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15743-8. PubMed ID: 12419852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurotransmitter-mediated control of neuronal firing in the red nucleus of the rat: reciprocal modulation between noradrenaline and GABA.
    Ciranna L; Licata F; Li Volsi G; Santangelo F
    Exp Neurol; 2000 May; 163(1):253-63. PubMed ID: 10785465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of GABAergic inhibition to the response characteristics of auditory units in the avian forebrain.
    Müller CM; Scheich H
    J Neurophysiol; 1988 Jun; 59(6):1673-89. PubMed ID: 2900295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of GABA- and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus.
    Le Beau FE; Rees A; Malmierca MS
    J Neurophysiol; 1996 Feb; 75(2):902-19. PubMed ID: 8714663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gabaergic inhibition antagonizes adaptive adjustment of the owl's auditory space map during the initial phase of plasticity.
    Zheng W; Knudsen EI
    J Neurosci; 2001 Jun; 21(12):4356-65. PubMed ID: 11404421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GABA shapes a systematic map of binaural sensitivity in the auditory cortex.
    Razak KA; Fuzessery ZM
    J Neurophysiol; 2010 Jul; 104(1):517-28. PubMed ID: 20484524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Duration sensitivity of neurons in the primary auditory cortex of albino mouse.
    Wang X; Qi Q; Huang C; Chomiak T; Luo F
    Hear Res; 2016 Feb; 332():160-169. PubMed ID: 26529681
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of GABA receptor antagonist on trigeminal caudalis nociceptive neurons in normal and neonatally capsaicin-treated rats.
    Chiang CY; Kwan CL; Hu JW; Sessle BJ
    J Neurophysiol; 1999 Nov; 82(5):2154-62. PubMed ID: 10561395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.