BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 10791777)

  • 1. Growth associated exopolysaccharide expression in Lactococcus lactis subspecies cremoris Ropy352.
    Knoshaug EP; Ahlgren JA; Trempy JE
    J Dairy Sci; 2000 Apr; 83(4):633-40. PubMed ID: 10791777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exopolysaccharide expression in Lactococcus lactis subsp. cremoris Ropy352: evidence for novel gene organization.
    Knoshaug EP; Ahlgren JA; Trempy JE
    Appl Environ Microbiol; 2007 Feb; 73(3):897-905. PubMed ID: 17122391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of ropy and mucoid phenotypes in Lactococcus lactis.
    Dierksen KP; Sandine WE; Trempy JE
    J Dairy Sci; 1997 Aug; 80(8):1528-36. PubMed ID: 9276790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short communication: salt extends the upper temperature limit for growth of Lactococcus lactis ssp. cremoris on solid M17 medium.
    Kilstrup M; Hammer K
    J Dairy Sci; 2000 Jul; 83(7):1448-50. PubMed ID: 10908051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A mutant of Streptococcus lactis with resistance to bacteriophages isolated in Argentina and the United States of America].
    De Fabrizio SV; Parada JL; Ledford RA; Solari A; Brown J
    Rev Argent Microbiol; 1989; 21(1):1-7. PubMed ID: 2501823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism.
    Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P
    Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. B-cell mitogen produced by slime-forming, encapsulated Lactococcus lactis ssp. cremoris isolated from ropy sour milk, viili.
    Kitazawa H; Yamaguchi T; Miura M; Saito T; Itoh T
    J Dairy Sci; 1993 Jun; 76(6):1514-9. PubMed ID: 8326024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between milk proteins and exopolysaccharides produced by Lactococcus lactis observed by scanning electron microscopy.
    Ayala-Hernandez I; Goff HD; Corredig M
    J Dairy Sci; 2008 Jul; 91(7):2583-90. PubMed ID: 18565916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel phenotype based on esterase electrophoretic polymorphism for the differentiation of Lactococcus lactis ssp. lactis and cremoris.
    Ouzari H; Hassen A; Najjari A; Ettoumi B; Daffonchio D; Zagorec M; Boudabous A; Mora D
    Lett Appl Microbiol; 2006 Oct; 43(4):351-9. PubMed ID: 16965363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Stability of Lactococcus lactis phages treated with sodium hypochlorite and during storage].
    Parada JL; de Fabrizio SV
    Rev Argent Microbiol; 2001; 33(2):89-95. PubMed ID: 11494761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterisation and enzymic modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B891.
    van Casteren WH; de Waard P; Dijkema C; Schols HA; Voragen AG
    Carbohydr Res; 2000 Aug; 327(4):411-22. PubMed ID: 10990026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PBP2b Mutations Improve the Growth of Phage-Resistant
    Guérin H; Quénée P; Palussière S; Courtin P; André G; Péchoux C; Costache V; Mahony J; van Sinderen D; Kulakauskas S; Chapot-Chartier MP
    Appl Environ Microbiol; 2023 Jun; 89(6):e0210322. PubMed ID: 37222606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis.
    Melchiorsen CR; Jokumsen KV; Villadsen J; Israelsen H; Arnau J
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):338-44. PubMed ID: 11935185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media.
    Kimoto-Nira H; Kobayashi M; Nomura M; Sasaki K; Suzuki C
    Int J Food Microbiol; 2009 May; 131(2-3):183-8. PubMed ID: 19339076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical note: Use of RFLP to characterize Lactococcus lactis strains producing exopolysaccharides.
    Deveau H; Moineau S
    J Dairy Sci; 2003 Apr; 86(4):1472-5. PubMed ID: 12741572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris KH is the rhamnose of the extracellular wall polysaccharide.
    Valyasevi R; Sandine WE; Geller BL
    Appl Environ Microbiol; 1990 Jun; 56(6):1882-9. PubMed ID: 2116761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of mesophilic mixed starter cultures used for the manufacture of aged cheddar cheese.
    Bissonnette F; Labrie S; Deveau H; Lamoureux M; Moineau S
    J Dairy Sci; 2000 Apr; 83(4):620-7. PubMed ID: 10791775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capsular polysaccharide of a slime-forming Lactococcus lactis ssp. cremoris LAPT 3001 isolated from Swedish fermented milk 'långfil'.
    Toba T; Kotani T; Adachi S
    Int J Food Microbiol; 1991 Feb; 12(2-3):167-71. PubMed ID: 1904758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.