These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 10792060)
1. A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution. Ostedgaard LS; Baldursson O; Vermeer DW; Welsh MJ; Robertson AD Proc Natl Acad Sci U S A; 2000 May; 97(10):5657-62. PubMed ID: 10792060 [TBL] [Abstract][Full Text] [Related]
2. A short segment of the R domain of cystic fibrosis transmembrane conductance regulator contains channel stimulatory and inhibitory activities that are separable by sequence modification. Xie J; Adams LM; Zhao J; Gerken TA; Davis PB; Ma J J Biol Chem; 2002 Jun; 277(25):23019-27. PubMed ID: 11950844 [TBL] [Abstract][Full Text] [Related]
3. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C. Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895 [TBL] [Abstract][Full Text] [Related]
4. Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains. Csanády L; Chan KW; Seto-Young D; Kopsco DC; Nairn AC; Gadsby DC J Gen Physiol; 2000 Sep; 116(3):477-500. PubMed ID: 10962022 [TBL] [Abstract][Full Text] [Related]
5. The two halves of CFTR form a dual-pore ion channel. Yue H; Devidas S; Guggino WB J Biol Chem; 2000 Apr; 275(14):10030-4. PubMed ID: 10744680 [TBL] [Abstract][Full Text] [Related]
6. Phosphorylation by cAMP-dependent protein kinase causes a conformational change in the R domain of the cystic fibrosis transmembrane conductance regulator. Dulhanty AM; Riordan JR Biochemistry; 1994 Apr; 33(13):4072-9. PubMed ID: 7511414 [TBL] [Abstract][Full Text] [Related]
7. Phosphorylation-dependent block of cystic fibrosis transmembrane conductance regulator chloride channel by exogenous R domain protein. Ma J; Tasch JE; Tao T; Zhao J; Xie J; Drumm ML; Davis PB J Biol Chem; 1996 Mar; 271(13):7351-6. PubMed ID: 8631756 [TBL] [Abstract][Full Text] [Related]
8. Stimulation of CFTR activity by its phosphorylated R domain. Winter MC; Welsh MJ Nature; 1997 Sep; 389(6648):294-6. PubMed ID: 9305845 [TBL] [Abstract][Full Text] [Related]
9. Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain. Chen JH J Biol Chem; 2020 Apr; 295(14):4577-4590. PubMed ID: 32102849 [TBL] [Abstract][Full Text] [Related]
10. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator. Schwiebert EM; Morales MM; Devidas S; Egan ME; Guggino WB Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2674-9. PubMed ID: 9482946 [TBL] [Abstract][Full Text] [Related]
11. A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function. Pasyk EA; Morin XK; Zeman P; Garami E; Galley K; Huan LJ; Wang Y; Bear CE J Biol Chem; 1998 Nov; 273(48):31759-64. PubMed ID: 9822639 [TBL] [Abstract][Full Text] [Related]
12. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047 [TBL] [Abstract][Full Text] [Related]
14. Conformation, independent of charge, in the R domain affects cystic fibrosis transmembrane conductance regulator channel openings. Xie J; Zhao J; Davis PB; Ma J Biophys J; 2000 Mar; 78(3):1293-305. PubMed ID: 10692317 [TBL] [Abstract][Full Text] [Related]
15. Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. Sheppard DN; Travis SM; Ishihara H; Welsh MJ J Biol Chem; 1996 Jun; 271(25):14995-5001. PubMed ID: 8663008 [TBL] [Abstract][Full Text] [Related]
16. Function of Xenopus cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels and use of human-Xenopus chimeras to investigate the pore properties of CFTR. Price MP; Ishihara H; Sheppard DN; Welsh MJ J Biol Chem; 1996 Oct; 271(41):25184-91. PubMed ID: 8810276 [TBL] [Abstract][Full Text] [Related]
17. Intracellular loop between transmembrane segments IV and V of cystic fibrosis transmembrane conductance regulator is involved in regulation of chloride channel conductance state. Xie J; Drumm ML; Ma J; Davis PB J Biol Chem; 1995 Nov; 270(47):28084-91. PubMed ID: 7499295 [TBL] [Abstract][Full Text] [Related]
18. An electrostatic interaction at the tetrahelix bundle promotes phosphorylation-dependent cystic fibrosis transmembrane conductance regulator (CFTR) channel opening. Wang W; Roessler BC; Kirk KL J Biol Chem; 2014 Oct; 289(44):30364-30378. PubMed ID: 25190805 [TBL] [Abstract][Full Text] [Related]
19. Cytoplasmic loop three of cystic fibrosis transmembrane conductance regulator contributes to regulation of chloride channel activity. Seibert FS; Linsdell P; Loo TW; Hanrahan JW; Riordan JR; Clarke DM J Biol Chem; 1996 Nov; 271(44):27493-9. PubMed ID: 8910333 [TBL] [Abstract][Full Text] [Related]
20. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]