BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10792525)

  • 1. A kinetic model for energy spilling-associated product formation in substrate-sufficient continuous culture.
    Liu Y; Tay JH
    J Appl Microbiol; 2000 Apr; 88(4):663-8. PubMed ID: 10792525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of soluble microbial product formation in substrate-sufficient batch culture of activated sludge.
    Liu Y; Rols JL
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):605-8. PubMed ID: 12172633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model of energy uncoupling for substrate-sufficient culture.
    Liu Y; Chen GH
    Biotechnol Bioeng; 1997 Aug; 55(3):571-6. PubMed ID: 18636525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model of dissolved organic carbon distribution for substrate-sufficient continuous culture.
    Liu Y
    Biotechnol Bioeng; 1999 Nov; 65(4):474-9. PubMed ID: 10506423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic model incorporating energy spilling for substrate removal in substrate-sufficient batch culture of activated sludge.
    Liu Y; Chen GH; Rols JL
    Appl Microbiol Biotechnol; 1999 Nov; 52(5):647-51. PubMed ID: 10570810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions.
    Zeng AP; Deckwer WD
    Biotechnol Prog; 1995; 11(1):71-9. PubMed ID: 7765990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic model for product formation of microbial and mammalian cells.
    Zeng AP
    Biotechnol Bioeng; 1995 May; 46(4):314-24. PubMed ID: 18623318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate consumption and excess sludge reduction of activated sludge in the presence of uncouplers: a modeling approach.
    Xie WM; Ni BJ; Sheng GP; Yu HQ; Yang M
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):2001-8. PubMed ID: 19898844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium oxysporum NFX06.
    Musavi SF; Dhavale A; Balakrishnan RM
    Prep Biochem Biotechnol; 2015; 45(2):158-72. PubMed ID: 24840354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic models of ribonucleic acid fermentation and continuous culture by Candida tropicalis no.121.
    Li B; Chen X; Ren H; Li L; Xiong J; Bai J; Chen Y; Wu J; Ying H
    Bioprocess Biosyst Eng; 2012 Mar; 35(3):415-22. PubMed ID: 21853330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The energy spilling reactions of bacteria and other organisms.
    Russell JB
    J Mol Microbiol Biotechnol; 2007; 13(1-3):1-11. PubMed ID: 17693707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple kinetic model for growth and biosynthesis of polyhydroxyalkanoate in Bacillus flexus.
    Divyashree MS; Rastogi NK; Shamala TR
    N Biotechnol; 2009 Oct; 26(1-2):92-8. PubMed ID: 19427420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of bacterial growth: balance of anabolic and catabolic reactions.
    Russell JB; Cook GM
    Microbiol Rev; 1995 Mar; 59(1):48-62. PubMed ID: 7708012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production.
    Liu YS; Wu JY
    Biotechnol Bioeng; 2008 Dec; 101(5):996-1004. PubMed ID: 18683256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of substrate surface loading on the kinetic behaviour of aerobic granules.
    Liu Y; Liu YQ; Wang ZW; Yang SF; Tay JH
    Appl Microbiol Biotechnol; 2005 Jun; 67(4):484-8. PubMed ID: 15647939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for energy-sufficient culture growth.
    Tsai SP; Lee YH
    Biotechnol Bioeng; 1990 Jan; 35(2):138-45. PubMed ID: 18592503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Kinetic model for exopolysaccharides (EPS) of Ganoderma lucidum in batch fermentation].
    Zhang JG; Chen XM; He XS
    Sheng Wu Gong Cheng Xue Bao; 2007 Nov; 23(6):1065-70. PubMed ID: 18257238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical solution of Luedeking-Piret equation for a batch fermentation obeying Monod growth kinetics.
    Garnier A; Gaillet B
    Biotechnol Bioeng; 2015 Dec; 112(12):2468-74. PubMed ID: 26038085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and kinetic characterization using process dynamics: acidophilic ferrous iron oxidation by Leptospirillum ferrooxidans.
    Kleerebezem R; van Loosdrecht MC
    Biotechnol Bioeng; 2008 May; 100(1):49-60. PubMed ID: 18080344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures.
    Mu Y; Wang G; Yu HQ
    Bioresour Technol; 2006 Jul; 97(11):1302-7. PubMed ID: 16055330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.