These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1079256)

  • 1. Quantitative relationship between active sodium transport, expansion of endoplasmic reticulum and specialized vacuoles ("scalloped sacs") in the outermost living cell layer of the frog skin epithelium (Rana temporaria).
    Voûte CL; Mollgård K; Ussing HH
    J Membr Biol; 1975; 21(3-4):273-89. PubMed ID: 1079256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some morphological aspects of active sodium transport. The epithelium of the frog skin.
    Voûte CL; Ussing HH
    J Cell Biol; 1968 Mar; 36(3):625-38. PubMed ID: 5645551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological aspects of some sodium transporting epithelia suggesting a transcellular pathway via elements of endoplasmic reticulum.
    Møllgård K; Rostgaard J
    J Membr Biol; 1978; 40 Spec No():71-89. PubMed ID: 310470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron microprobe analysis of frog skin epithelium: pathway of transepithelial sodium transport.
    Rick R; Dörge A; Thurau K
    Soc Gen Physiol Ser; 1981; 36():197-208. PubMed ID: 6974404
    [No Abstract]   [Full Text] [Related]  

  • 5. An upper limit to the number of sodium channels in frog skin epithelium.
    Cuthbert AW
    J Physiol; 1973 Feb; 228(3):681-92. PubMed ID: 4540802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of certain pesticides on active sodium transport in the epithelium of isolated frog skin.
    Pogorzelska H; Knapowski J; Kontek M
    Acta Physiol Pol; 1982; 33(3):189-97. PubMed ID: 6983813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of small hydrostatic pressure gradients on the rate of active sodium transport across isolated living frog-skin membranes.
    Nutbourne DM
    J Physiol; 1968 Mar; 195(1):1-18. PubMed ID: 5639801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of amiloride and strophanthin K on sodium transport through isolated frog skin under increased pressure].
    Lobanov NM; Shushakov VV; Demchenko IT; Natochin IuV
    Fiziol Zh SSSR Im I M Sechenova; 1987 Dec; 73(12):1684-90. PubMed ID: 2450790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of amiloride on chloride transport across amphibian epithelia.
    Kristensen P
    J Membr Biol; 1978; 40 Spec No():167-85. PubMed ID: 104038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Opposite actions of different doses of arginine-vasotocin and 1-deamino-arginine-vasotocin on sodium ion transport in skin of the frog Rana temporaria].
    Bogolepova AE
    Zh Evol Biokhim Fiziol; 2011; 47(1):49-53. PubMed ID: 21469341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the polyene antibiotic filipin and the calcium ionophore A23187 on sodium transport in isolated frog skin (Rana temporaria).
    Nielsen R
    J Membr Biol; 1978; 40 Spec No():331-45. PubMed ID: 366154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of padan on active sodium transport in the epithelium of isolated frog skin].
    Kontek M; Pogorzelska H; Knapowski J
    Med Pr; 1984; 35(1):7-11. PubMed ID: 6610815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The coupled movements of sodium and chloride across the basolateral membrane of frog skin epithelium.
    Fernandes PL; Ferreira HG; Ferreira KT
    J Physiol; 1989 Sep; 416():403-20. PubMed ID: 2607456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An increase in [Ca2+]i activates basolateral chloride channels and inhibits apical sodium channels in frog skin epithelium.
    Brodin B; Rytved KA; Nielsen R
    Pflugers Arch; 1996; 433(1-2):16-25. PubMed ID: 9019717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of basolateral membrane conductance in the regulation of transepithelial sodium transport across frog skin.
    Nagel W; Katz U
    Pflugers Arch; 2003 May; 446(2):198-202. PubMed ID: 12739157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microelectrode study of insulin effect on apical and basolateral cell membrane of frog skin: comparison with the effect of 1-deamino-8-D-arginine-vasopressin (dDAVP).
    Ponec J; Bakos P; Lichardus B
    Gen Physiol Biophys; 1989 Jun; 8(3):245-55. PubMed ID: 2670663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The intracellular electrical potential profile of the frog skin epithelium.
    Nagel W
    Pflugers Arch; 1976 Sep; 365(2-3):135-43. PubMed ID: 1086460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloride dependence of active sodium transport in frog skin: the role of intercellular spaces.
    Ferreira KT; Hill BS
    J Physiol; 1978 Oct; 283():283-305. PubMed ID: 102765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acidification and sodium entry in frog skin epithelium.
    Benos DJ
    Biochim Biophys Acta; 1981 Sep; 647(1):40-8. PubMed ID: 6975123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for electrogenic Na transport from the cytoplasmatic tissue pool of frog skin epithelium [proceedings].
    Nagel W
    J Physiol; 1978 Nov; 284():146P-147P. PubMed ID: 310456
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.