BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 10792623)

  • 1. Transport of thiamin in rat renal brush border membrane vesicles.
    Gastaldi G; Cova E; Verri A; Laforenza U; Faelli A; Rindi G
    Kidney Int; 2000 May; 57(5):2043-54. PubMed ID: 10792623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A thiamine/H+ antiport mechanism for thiamine entry into brush border membrane vesicles from rat small intestine.
    Laforenza U; Orsenigo MN; Rindi G
    J Membr Biol; 1998 Jan; 161(2):151-61. PubMed ID: 9435271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Administration of atrial natriuretic factor inhibits sodium-coupled transport in proximal tubules.
    Hammond TG; Yusufi AN; Knox FG; Dousa TP
    J Clin Invest; 1985 Jun; 75(6):1983-9. PubMed ID: 2989338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Ni transport into brush border membrane vesicles (BBMVs) isolated from the kidney of the freshwater rainbow trout (Oncorhynchus mykiss).
    Pane EF; Glover CN; Patel M; Wood CM
    Biochim Biophys Acta; 2006 Jan; 1758(1):74-84. PubMed ID: 16460665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related thiamin transport by small intestinal microvillous vesicles of rat.
    Gastaldi G; Laforenza U; Ferrari G; Casasco A; Rindi G
    Biochim Biophys Acta; 1992 Apr; 1105(2):271-7. PubMed ID: 1586663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent transport of cadmium in rat renal brush border membrane vesicles: cadmium efflux via H+-antiport.
    Endo T; Kimura O; Sakata M
    Toxicol Lett; 1998 Oct; 99(2):99-107. PubMed ID: 9817081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transport mechanism of an organic cation, disopyramide, by brush-border membranes. Comparison between renal cortex and small intestine of the rat.
    Takahashi Y; Itoh T; Kobayashi M; Sugawara M; Saitoh H; Iseki K; Miyazaki K; Miyazaki S; Takada M; Kawashima Y
    J Pharm Pharmacol; 1993 May; 45(5):419-24. PubMed ID: 8099959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Na+/H+ and Cl-/OH- exchange in rat jejunal brush border membrane vesicles: studies with acridine orange.
    Cassano G; Murer H
    Boll Soc Ital Biol Sper; 1984 May; 60 Suppl 4():143-7. PubMed ID: 6087849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Studies of oxalate efflux and oxalate transport via anion exchange in rat renal brush border membrane vesicles].
    Nishibuchi S; Okada Y; Yoshida O
    Nihon Jinzo Gakkai Shi; 1989 Jan; 31(1):57-65. PubMed ID: 2747000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiamine intestinal transport and related issues: recent aspects.
    Rindi G; Laforenza U
    Proc Soc Exp Biol Med; 2000 Sep; 224(4):246-55. PubMed ID: 10964259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney.
    Murer H; Hopfer U; Kinne R
    Biochem J; 1976 Mar; 154(3):597-604. PubMed ID: 942389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport mechanisms of enoxacin in rat brush-border membrane of renal cortex: interaction with organic cation transport system and ionic diffusion potential dependent uptake.
    Hirano T; Iseki K; Sugawara M; Miyazaki S; Takada M; Miyazaki K
    Biol Pharm Bull; 1995 Feb; 18(2):342-6. PubMed ID: 7538004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of organic cation transport by avian renal brush-border membrane vesicles.
    Villalobos AR; Braun EJ
    Am J Physiol; 1995 Nov; 269(5 Pt 2):R1050-9. PubMed ID: 7503291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of dipeptide transport in rat renal brush border membranes: studies with glycylsarcosine.
    Tiruppathi C; Ganapathy V; Leibach FH
    Pediatr Res; 1987 Dec; 22(6):641-6. PubMed ID: 2829104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urate and p-aminohippurate transport in the brush border membrane of the pig kidney.
    Werner D; Martinez F; Roch-Ramel F
    J Pharmacol Exp Ther; 1990 Feb; 252(2):792-9. PubMed ID: 2313601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Na+ uptake into renal brush border membrane vesicles.
    Nord EP; Hafezi A; Wright EM; Fine LG
    Am J Physiol; 1984 Oct; 247(4 Pt 2):F548-54. PubMed ID: 6496682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calmodulin-mediated effects of loperamide on chloride transport by brush border membrane vesicles from human ileum.
    Stoll R; Ruppin H; Domschke W
    Gastroenterology; 1988 Jul; 95(1):69-76. PubMed ID: 2836258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiamine transport in the brush border membrane vesicles of the guinea-pig jejunum.
    Hayashi K; Yoshida S; Kawasaki T
    Biochim Biophys Acta; 1981 Feb; 641(1):106-13. PubMed ID: 6260179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiamine transport in human placental brush border membrane vesicles.
    Grassl SM
    Biochim Biophys Acta; 1998 May; 1371(2):213-22. PubMed ID: 9630634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple transport systems for organic cations in renal brush-border membrane vesicles.
    Miyamoto Y; Tiruppathi C; Ganapathy V; Leibach FH
    Am J Physiol; 1989 Apr; 256(4 Pt 2):F540-8. PubMed ID: 2539743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.