BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 10794422)

  • 1. Structure of an analog of fusion peptide from hemagglutinin.
    Dubovskii PV; Li H; Takahashi S; Arseniev AS; Akasaka K
    Protein Sci; 2000 Apr; 9(4):786-98. PubMed ID: 10794422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual titration of the membrane-bound artificial hemagglutinin fusion peptide.
    Dubovskii PV
    Eur Biophys J; 2012 Dec; 41(12):1077-84. PubMed ID: 23108499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterizations of fusion peptide analogs of influenza virus hemagglutinin. Implication of the necessity of a helix-hinge-helix motif in fusion activity.
    Hsu CH; Wu SH; Chang DK; Chen C
    J Biol Chem; 2002 Jun; 277(25):22725-33. PubMed ID: 11937502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity of amphiphilic anionic peptides for fusion of phospholipid vesicles.
    Murata M; Takahashi S; Shirai Y; Kagiwada S; Hishida R; Ohnishi S
    Biophys J; 1993 Mar; 64(3):724-34. PubMed ID: 8471724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The amino-terminal region of the fusion peptide of influenza virus hemagglutinin HA2 inserts into sodium dodecyl sulfate micelle with residues 16-18 at the aqueous boundary at acidic pH. Oligomerization and the conformational flexibility.
    Chang DK; Cheng SF; Deo Trivedi V; Yang SH
    J Biol Chem; 2000 Jun; 275(25):19150-8. PubMed ID: 10764801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent membrane fusion and vesiculation of phospholipid large unilamellar vesicles induced by amphiphilic anionic and cationic peptides.
    Murata M; Takahashi S; Kagiwada S; Suzuki A; Ohnishi S
    Biochemistry; 1992 Feb; 31(7):1986-92. PubMed ID: 1536841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and dynamics of micelle-bound neuropeptide Y: comparison with unligated NPY and implications for receptor selection.
    Bader R; Bettio A; Beck-Sickinger AG; Zerbe O
    J Mol Biol; 2001 Jan; 305(2):307-29. PubMed ID: 11124908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of increased length and intact capping sequences to the conformational preference for helix in a 31-residue peptide from the C terminus of myohemerythrin.
    Reymond MT; Huo S; Duggan B; Wright PE; Dyson HJ
    Biochemistry; 1997 Apr; 36(17):5234-44. PubMed ID: 9136885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide conformational changes induced by tryptophan-phosphocholine interactions in a micelle.
    Neidigh JW; Andersen NH
    Biopolymers; 2002 Dec; 65(5):354-61. PubMed ID: 12389215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure analysis of a fusogenic peptide sequence from the sea urchin fertilization protein bindin.
    Glaser RW; Grüne M; Wandelt C; Ulrich AS
    Biochemistry; 1999 Feb; 38(8):2560-9. PubMed ID: 10029551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization and topology of the second potential membrane anchor region in the thromboxane A2 synthase amino-terminal domain.
    Ruan KH; Li D; Ji J; Lin YZ; Gao X
    Biochemistry; 1998 Jan; 37(3):822-30. PubMed ID: 9454571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-inserted conformation of transmembrane domain 4 of divalent-metal transporter.
    Li H; Li F; Sun H; Qian ZM
    Biochem J; 2003 Jun; 372(Pt 3):757-66. PubMed ID: 12646040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional structure of leucocin A in trifluoroethanol and dodecylphosphocholine micelles: spatial location of residues critical for biological activity in type IIa bacteriocins from lactic acid bacteria.
    Fregeau Gallagher NL; Sailer M; Niemczura WP; Nakashima TT; Stiles ME; Vederas JC
    Biochemistry; 1997 Dec; 36(49):15062-72. PubMed ID: 9398233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation and interactions of bombolitin I analogues with SDS micelles and phospholipid vesicles: CD, fluorescence, two-dimensional NMR and computer simulations.
    Chorev M; Gurrath M; Behar V; Mammi S; Tonello A; Peggion E
    Biopolymers; 1995 Oct; 36(4):473-84. PubMed ID: 7578942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-Dependent conformational changes and topology of a herpesvirus translocating peptide in a membrane-mimetic environment.
    Schievano E; Calisti T; Menegazzo I; Battistutta R; Peggion E; Mammi S; Palù G; Loregian A
    Biochemistry; 2004 Jul; 43(29):9343-51. PubMed ID: 15260477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge.
    Uteng M; Hauge HH; Markwick PR; Fimland G; Mantzilas D; Nissen-Meyer J; Muhle-Goll C
    Biochemistry; 2003 Oct; 42(39):11417-26. PubMed ID: 14516192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational studies of parathyroid hormone (PTH)/PTH-related protein (PTHrp) chimeric peptides.
    Schievano E; Mammi S; Silvestri L; Behar V; Rosenblatt M; Chorev M; Peggion E
    Biopolymers; 2000 Nov; 54(6):429-47. PubMed ID: 10951329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PhoE signal peptide inserts into micelles as a dynamic helix-break-helix structure, which is modulated by the environment. A two-dimensional 1H NMR study.
    Chupin V; Killian JA; Breg J; de Jongh HH; Boelens R; Kaptein R; de Kruijff B
    Biochemistry; 1995 Sep; 34(36):11617-24. PubMed ID: 7547893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bindings of hMRP1 transmembrane peptides with dodecylphosphocholine and dodecyl-β-d-maltoside micelles: a molecular dynamics simulation study.
    Abel S; Lorieau A; de Foresta B; Dupradeau FY; Marchi M
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):493-509. PubMed ID: 24157718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the intersubunit region of influenza virus hemagglutinin: comparative CD and FTIR spectroscopic studies on multiple antigenic peptides.
    Majer Z; Holly S; Tóth GK; Váradi G; Nagy Z; Horváth A; Rajnavölgyi E; Laczkó I; Hollósi M
    Arch Biochem Biophys; 1995 Sep; 322(1):112-8. PubMed ID: 7574664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.