BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10794669)

  • 1. Hypertonic perfusion inhibits intracellular Na and Ca accumulation in hypoxic myocardium.
    Ho HS; Liu H; Cala PM; Anderson SE
    Am J Physiol Cell Physiol; 2000 May; 278(5):C953-64. PubMed ID: 10794669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-related differences in Na+-dependent Ca2+ accumulation in rabbit hearts exposed to hypoxia and acidification.
    Anderson SE; Liu H; Ho HS; Lewis EJ; Cala PM
    Am J Physiol Cell Physiol; 2003 May; 284(5):C1123-32. PubMed ID: 12519744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na-H exchange in myocardium: effects of hypoxia and acidification on Na and Ca.
    Anderson SE; Murphy E; Steenbergen C; London RE; Cala PM
    Am J Physiol; 1990 Dec; 259(6 Pt 1):C940-8. PubMed ID: 2175547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Na-K-2Cl cotransport inhibition on myocardial Na and Ca during ischemia and reperfusion.
    Anderson SE; Dickinson CZ; Liu H; Cala PM
    Am J Physiol; 1996 Feb; 270(2 Pt 1):C608-18. PubMed ID: 8779926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylisopropylamiloride diminishes changes in intracellular Na, Ca and pH in ischemic newborn myocardium.
    Liu H; Cala PM; Anderson SE
    J Mol Cell Cardiol; 1997 Aug; 29(8):2077-86. PubMed ID: 9281440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ischemic preconditioning: effects on pH, Na and Ca in newborn rabbit hearts during Ischemia/Reperfusion.
    Liu H; Cala PM; Anderson SE
    J Mol Cell Cardiol; 1998 Mar; 30(3):685-97. PubMed ID: 9515043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cold cardioplegia on pH, Na, and Ca in newborn rabbit hearts.
    Anderson SE; Liu H; Beyschau A; Cala PM
    Am J Physiol Heart Circ Physiol; 2006 Mar; 290(3):H1090-7. PubMed ID: 16227341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute effects of 17beta-estradiol on myocardial pH, Na+, and Ca2+ and ischemia-reperfusion injury.
    Anderson SE; Kirkland DM; Beyschau A; Cala PM
    Am J Physiol Cell Physiol; 2005 Jan; 288(1):C57-64. PubMed ID: 15385267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hypoxia and acidification on myocardial Na and Ca. Role of Na-H and Na-Ca exchange.
    Anderson SE; Cala PM; Steenbergen C; London RE; Murphy E
    Ann N Y Acad Sci; 1991; 639():453-5. PubMed ID: 1664705
    [No Abstract]   [Full Text] [Related]  

  • 10. Na-dependent changes in intracellular Ca in spontaneously hypertensive rat hearts.
    Anderson SE; Gray SD; Atherley R; Cala PM
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Jul; 123(3):299-309. PubMed ID: 10501022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of intracellular pH in cortical brain slices following anoxia studied by nuclear magnetic resonance spectroscopy: role of lactate removal, extracellular sodium and sodium/hydrogen exchange.
    Pirttilä TR; Kauppinen RA
    Neuroscience; 1992; 47(1):155-64. PubMed ID: 1315933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of sodium/calcium exchange in the mechanism of myocardial stunning: protective effect of reperfusion with high sodium solution.
    Kusuoka H; Camilion de Hurtado MC; Marban E
    J Am Coll Cardiol; 1993 Jan; 21(1):240-8. PubMed ID: 8417067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the cardiac Na(+)/H(+)exchanger in [Ca(2+)](i)and [Na(+)](i)handling during intracellular acidosis. Effect of cariporide (Hoe 642).
    Salameh A; Dhein S; Beuckelmann DJ
    Pharmacol Res; 2002 Jan; 45(1):35-41. PubMed ID: 11820859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term inhibition of the Na-H exchanger limits acidosis and reduces ischemic injury in the rat heart.
    Schaefer S; Ramasamy R
    Cardiovasc Res; 1997 May; 34(2):329-36. PubMed ID: 9205547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion transport during hypothermia in cultured heart cells: implications for protection of the immature myocardium.
    Knerr SM; Lieberman M
    J Mol Cell Cardiol; 1993 Mar; 25(3):277-88. PubMed ID: 8389888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stretch-dependent modulation of [Na+]i, [Ca2+]i, and pHi in rabbit myocardium--a mechanism for the slow force response.
    Luers C; Fialka F; Elgner A; Zhu D; Kockskämper J; von Lewinski D; Pieske B
    Cardiovasc Res; 2005 Dec; 68(3):454-63. PubMed ID: 16099446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism by which cytoplasmic protons inhibit the sodium-calcium exchanger in guinea-pig heart cells.
    Doering AE; Lederer WJ
    J Physiol; 1993 Jul; 466():481-99. PubMed ID: 8410703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of accumulation of sodium and calcium on contractile failure of the hypoxic/reoxygenated heart.
    Tanonaka K; Niwa T; Takeo S
    Jpn Heart J; 1996 Jan; 37(1):105-17. PubMed ID: 8632618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of amiloride on metabolism and contractility during reoxygenation in perfused rat hearts.
    Weiss RG; Lakatta EG; Gerstenblith G
    Circ Res; 1990 Apr; 66(4):1012-22. PubMed ID: 2317884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A constraint on possible stoichiometries of myocardial sodium-calcium exchange.
    Axelsen PH; Bassingthwaighte JB
    Basic Res Cardiol; 1988; 83(3):314-26. PubMed ID: 3137920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.