These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 10794686)
1. Probing the conformation of the sugar transport inhibitor phlorizin by 2D-NMR, molecular dynamics studies, and pharmacophore analysis. Wielert-Badt S; Lin JT; Lorenz M; Fritz S; Kinne RK J Med Chem; 2000 May; 43(9):1692-8. PubMed ID: 10794686 [TBL] [Abstract][Full Text] [Related]
2. D-Glucose-recognition and phlorizin-binding sites in human sodium/D-glucose cotransporter 1 (hSGLT1): a tryptophan scanning study. Tyagi NK; Kumar A; Goyal P; Pandey D; Siess W; Kinne RK Biochemistry; 2007 Nov; 46(47):13616-28. PubMed ID: 17983207 [TBL] [Abstract][Full Text] [Related]
3. C-terminus loop 13 of Na+ glucose cotransporter SGLT1 contains a binding site for alkyl glucosides. Raja MM; Kipp H; Kinne RK Biochemistry; 2004 Aug; 43(34):10944-51. PubMed ID: 15323554 [TBL] [Abstract][Full Text] [Related]
4. Phlorizin recognition in a C-terminal fragment of SGLT1 studied by tryptophan scanning and affinity labeling. Raja MM; Tyagi NK; Kinne RK J Biol Chem; 2003 Dec; 278(49):49154-63. PubMed ID: 12954647 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of phlorizin derivatives and their inhibitory effect on the renal sodium/D-glucose cotransport system. Lin JT; Hahn KD; Kinne R Biochim Biophys Acta; 1982 Dec; 693(2):379-88. PubMed ID: 7159584 [TBL] [Abstract][Full Text] [Related]
6. Role of hydration in the conformational transitions between unliganded and liganded forms of loop 13 of the Na+/glucose cotransporter 1. Xia X; Wang G; Fang H Biochem Biophys Res Commun; 2004 Mar; 315(4):1018-24. PubMed ID: 14985114 [TBL] [Abstract][Full Text] [Related]
7. Phlorizin as a probe of the small-intestinal Na+,D-glucose cotransporter. A model. Toggenburger G; Kessler M; Semenza G Biochim Biophys Acta; 1982 Jun; 688(2):557-71. PubMed ID: 7201854 [TBL] [Abstract][Full Text] [Related]
8. Binding of phlorizin to the isolated C-terminal extramembranous loop of the Na+/glucose cotransporter assessed by intrinsic tryptophan fluorescence. Xia X; Lin JT; Kinne RK Biochemistry; 2003 May; 42(20):6115-20. PubMed ID: 12755613 [TBL] [Abstract][Full Text] [Related]
9. Identification of a region critically involved in the interaction of phlorizin with the rabbit sodium-D-glucose cotransporter SGLT1. Novakova R; Homerova D; Kinne RK; Kinne-Saffran E; Lin JT J Membr Biol; 2001 Nov; 184(1):55-60. PubMed ID: 11687878 [TBL] [Abstract][Full Text] [Related]
10. Common mechanisms of inhibition for the Na+/glucose (hSGLT1) and Na+/Cl-/GABA (hGAT1) cotransporters. Hirayama BA; Díez-Sampedro A; Wright EM Br J Pharmacol; 2001 Oct; 134(3):484-95. PubMed ID: 11588102 [TBL] [Abstract][Full Text] [Related]
11. Kinetic mechanisms of inhibitor binding: relevance to the fast-acting slow-binding paradigm. Falk S; Oulianova N; Berteloot A Biophys J; 1999 Jul; 77(1):173-88. PubMed ID: 10388748 [TBL] [Abstract][Full Text] [Related]
12. Small-intestinal Na+/D-glucose cotransport. Inactivation of sugar transport and phlorizin binding by thiol-group and amino-group reagents. Biber J; Weber J; Semenza G Biochim Biophys Acta; 1983 Mar; 728(3):429-37. PubMed ID: 6681713 [TBL] [Abstract][Full Text] [Related]
13. Conformational dynamics of hSGLT1 during Na+/glucose cotransport. Loo DD; Hirayama BA; Karakossian MH; Meinild AK; Wright EM J Gen Physiol; 2006 Dec; 128(6):701-20. PubMed ID: 17130520 [TBL] [Abstract][Full Text] [Related]
14. Structural state of the Na+/D-glucose cotransporter in calf kidney brush-border membranes. Target size analysis of Na+-dependent phlorizin binding and Na+-dependent D-glucose transport. Lin JT; Szwarc K; Kinne R; Jung CY Biochim Biophys Acta; 1984 Nov; 777(2):201-8. PubMed ID: 6148966 [TBL] [Abstract][Full Text] [Related]
15. Structure of D-allose binding protein from Escherichia coli bound to D-allose at 1.8 A resolution. Chaudhuri BN; Ko J; Park C; Jones TA; Mowbray SL J Mol Biol; 1999 Mar; 286(5):1519-31. PubMed ID: 10064713 [TBL] [Abstract][Full Text] [Related]
16. A two sodium ion/D-glucose symport mechanism: membrane potential effects on phlorizin binding. Lever JE Biochemistry; 1984 Sep; 23(20):4697-702. PubMed ID: 6541946 [TBL] [Abstract][Full Text] [Related]
17. Interaction of phlorizin, a potent inhibitor of the Na+/D-glucose cotransporter, with the NADPH-binding site of mammalian catalases. Kitlar T; Döring F; Diedrich DF; Frank R; Wallmeier H; Kinne RK; Deutscher J Protein Sci; 1994 Apr; 3(4):696-700. PubMed ID: 8003987 [TBL] [Abstract][Full Text] [Related]
18. 4-Azidophlorizin, a high affinity probe and photoaffinity label for the glucose transporter in brush border membranes. Gibbs EM; Hosang M; Reber BF; Semenza G; Diedrich DF Biochim Biophys Acta; 1982 Jun; 688(2):547-56. PubMed ID: 7201853 [TBL] [Abstract][Full Text] [Related]
19. Diethylpyrocarbonate inhibition of sodium-glucose cotransport in kidney brush-border membrane vesicles. Poirée JC; Starita-Géribaldi M; Sudaka P Biochim Biophys Acta; 1987 Jun; 900(2):291-4. PubMed ID: 3593718 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of photoaffinity probes [2(')-iodo-4(')-(3(")-trifluoromethyldiazirinyl)phenoxy]-D-glucopyranoside and [(4(')-benzoyl)phenoxy]-D-glucopyranoside for the identification of sugar-binding and phlorizin-binding sites in the sodium/D-glucose cotransporter protein. Tyagi NK; Kinne RK Anal Biochem; 2003 Dec; 323(1):74-83. PubMed ID: 14622961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]