BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 10795574)

  • 1. Emulsification of chemical and enzymatic hydrolysates of beta-lactoglobulin: characterization of the peptides adsorbed at the interface.
    Rahali V; Chobert JM; Haertlé T; Guéguen J
    Nahrung; 2000 Apr; 44(2):89-95. PubMed ID: 10795574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Foaming characteristics of chemical and enzymatic hydrolysates of bovine beta-lactoglobulin.
    Rahali V; Guéguen J
    Nahrung; 2000 Oct; 44(5):309-17. PubMed ID: 11075371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical cleavage of bovine beta-lactoglobulin by BNPS-skatole for preparative purposes: comparative study of hydrolytic procedures and peptide characterization.
    Rahali V; Gueguen J
    J Protein Chem; 1999 Jan; 18(1):1-12. PubMed ID: 10071923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of antioxidant enzymatic hydrolysates from alpha-lactalbumin and beta-lactoglobulin. Identification of active peptides by HPLC-MS/MS.
    Hernández-Ledesma B; Dávalos A; Bartolomé B; Amigo L
    J Agric Food Chem; 2005 Feb; 53(3):588-93. PubMed ID: 15686406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of beta-lactoglobulin hydrolysis with thermolysin under denaturing temperatures on the release of bioactive peptides.
    Hernández-Ledesma B; Ramos M; Recio I; Amigo L
    J Chromatogr A; 2006 May; 1116(1-2):31-7. PubMed ID: 16580004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in chymotrypsin hydrolysis of beta-lactoglobulin A induced by high hydrostatic pressure.
    Chicón R; López-Fandiño R; Quirós A; Belloque J
    J Agric Food Chem; 2006 Mar; 54(6):2333-41. PubMed ID: 16536616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of genetic variation on the tryptic hydrolysis of bovine beta-lactoglobulin A, B, and C.
    Creamer LK; Nilsson HC; Paulsson MA; Coker CJ; Hill JP; Jiménez-Flores R
    J Dairy Sci; 2004 Dec; 87(12):4023-32. PubMed ID: 15545362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of thermal treatment, ionic strength, and pH on the short-term and long-term coalescence stability of beta-lactoglobulin emulsions.
    Tcholakova S; Denkov ND; Sidzhakova D; Campbell B
    Langmuir; 2006 Jul; 22(14):6042-52. PubMed ID: 16800657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of exopolysaccharides on the hydrolysis of beta-lactoglobulin by Lactobacillus acidophilus CRL 636 in an in vitro gastric/pancreatic system.
    Pescuma M; Hébert EM; Dalgalarrondo M; Haertlé T; Mozzi F; Chobert JM; Font de Valdez G
    J Agric Food Chem; 2009 Jun; 57(12):5571-7. PubMed ID: 19469473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptic and tryptic hydrolysis of native and heated whey protein to reduce its antigenicity.
    Kim SB; Ki KS; Khan MA; Lee WS; Lee HJ; Ahn BS; Kim HS
    J Dairy Sci; 2007 Sep; 90(9):4043-50. PubMed ID: 17699020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and release kinetics of peptides from the process of peptic hydrolysis of bovine hemoglobin by LC-ESI-MS/MS.
    Su RX; Qi W; He ZM
    Prep Biochem Biotechnol; 2007; 37(2):123-38. PubMed ID: 17454823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption and structural change of beta-lactoglobulin at the diacylglycerol-water interface.
    Sakuno MM; Matsumoto S; Kawai S; Taihei K; Matsumura Y
    Langmuir; 2008 Oct; 24(20):11483-8. PubMed ID: 18803411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptides are building blocks of heat-induced fibrillar protein aggregates of beta-lactoglobulin formed at pH 2.
    Akkermans C; Venema P; van der Goot AJ; Gruppen H; Bakx EJ; Boom RM; van der Linden E
    Biomacromolecules; 2008 May; 9(5):1474-9. PubMed ID: 18416530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of an electrodialytic reactor for the simultaneous β-lactoglobulin enzymatic hydrolysis and fractionation of generated bioactive peptides.
    Doyen A; Husson E; Bazinet L
    Food Chem; 2013 Feb; 136(3-4):1193-202. PubMed ID: 23194514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of aqueous phase composition upon protein destabilization at water/organic solvent interface.
    Sah H; Bahl Y
    J Control Release; 2005 Aug; 106(1-2):51-61. PubMed ID: 16005095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat-induced redistribution of disulfide bonds in milk proteins. 1. Bovine beta-lactoglobulin.
    Creamer LK; Bienvenue A; Nilsson H; Paulsson M; van Wanroij M; Lowe EK; Anema SG; Boland MJ; Jiménez-Flores R
    J Agric Food Chem; 2004 Dec; 52(25):7660-8. PubMed ID: 15675818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface adsorption alters the susceptibility of whey proteins to pepsin-digestion.
    Nik AM; Wright AJ; Corredig M
    J Colloid Interface Sci; 2010 Apr; 344(2):372-81. PubMed ID: 20116801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective separation of cationic peptides from a tryptic hydrolysate of beta-lactoglobulin by electrofiltration.
    Lapointe JF; Gauthier SF; Pouliot Y; Bouchard C
    Biotechnol Bioeng; 2006 Jun; 94(2):223-33. PubMed ID: 16596667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foaming and interfacial properties of hydrolyzed beta-lactoglobulin.
    Davis JP; Doucet D; Foegeding EA
    J Colloid Interface Sci; 2005 Aug; 288(2):412-22. PubMed ID: 15927608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.