These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 10795683)
1. Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17. Quentmeier A; Kraft R; Kostka S; Klockenkämper R; Friedrich CG Arch Microbiol; 2000 Feb; 173(2):117-25. PubMed ID: 10795683 [TBL] [Abstract][Full Text] [Related]
2. Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation. Wodara C; Bardischewsky F; Friedrich CG J Bacteriol; 1997 Aug; 179(16):5014-23. PubMed ID: 9260941 [TBL] [Abstract][Full Text] [Related]
3. Sulfur dehydrogenase of Paracoccus pantotrophus: the heme-2 domain of the molybdoprotein cytochrome c complex is dispensable for catalytic activity. Bardischewsky F; Quentmeier A; Rother D; Hellwig P; Kostka S; Friedrich CG Biochemistry; 2005 May; 44(18):7024-34. PubMed ID: 15865447 [TBL] [Abstract][Full Text] [Related]
4. Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. Friedrich CG; Quentmeier A; Bardischewsky F; Rother D; Kraft R; Kostka S; Prinz H J Bacteriol; 2000 Sep; 182(17):4677-87. PubMed ID: 10940005 [TBL] [Abstract][Full Text] [Related]
5. Identification of ccdA in Paracoccus pantotrophus GB17: disruption of ccdA causes complete deficiency in c-type cytochromes. Bardischewsky F; Friedrich CG J Bacteriol; 2001 Jan; 183(1):257-63. PubMed ID: 11114924 [TBL] [Abstract][Full Text] [Related]
6. Evidence for two pathways of thiosulfate oxidation in Starkeya novella (formerly Thiobacillus novellus). Kappler U; Friedrich CG; Trüper HG; Dahl C Arch Microbiol; 2001 Feb; 175(2):102-11. PubMed ID: 11285738 [TBL] [Abstract][Full Text] [Related]
7. Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. Rother D; Henrich HJ; Quentmeier A; Bardischewsky F; Friedrich CG J Bacteriol; 2001 Aug; 183(15):4499-508. PubMed ID: 11443084 [TBL] [Abstract][Full Text] [Related]
8. The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17. Quentmeier A; Friedrich CG FEBS Lett; 2001 Aug; 503(2-3):168-72. PubMed ID: 11513876 [TBL] [Abstract][Full Text] [Related]
9. Sulfite:Cytochrome c oxidoreductase from Thiobacillus novellus. Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family. Kappler U; Bennett B; Rethmeier J; Schwarz G; Deutzmann R; McEwan AG; Dahl C J Biol Chem; 2000 May; 275(18):13202-12. PubMed ID: 10788424 [TBL] [Abstract][Full Text] [Related]
10. Identification of two domains and distal histidine ligands to the four haems in the bacterial c-type cytochrome NapC; the prototype connector between quinol/quinone and periplasmic oxido-reductases. Cartron ML; Roldán MD; Ferguson SJ; Berks BC; Richardson DJ Biochem J; 2002 Dec; 368(Pt 2):425-32. PubMed ID: 12186631 [TBL] [Abstract][Full Text] [Related]
11. Direct electrochemistry of a bacterial sulfite dehydrogenase. Aguey-Zinsou KF; Bernhardt PV; Kappler U; McEwan AG J Am Chem Soc; 2003 Jan; 125(2):530-5. PubMed ID: 12517167 [TBL] [Abstract][Full Text] [Related]
12. Structural insight into SoxC and SoxD interaction and their role in electron transport process in the novel global sulfur cycle in Paracoccus pantotrophus. Bagchi A; Roy P Biochem Biophys Res Commun; 2005 Jun; 331(4):1107-13. PubMed ID: 15882991 [TBL] [Abstract][Full Text] [Related]
13. Sulfide dehydrogenase activity of the monomeric flavoprotein SoxF of Paracoccus pantotrophus. Quentmeier A; Hellwig P; Bardischewsky F; Wichmann R; Friedrich CG Biochemistry; 2004 Nov; 43(46):14696-703. PubMed ID: 15544340 [TBL] [Abstract][Full Text] [Related]
14. Isolation and characterization of the moxJ, moxG, moxI, and moxR genes of Paracoccus denitrificans: inactivation of moxJ, moxG, and moxR and the resultant effect on methylotrophic growth. Van Spanning RJ; Wansell CW; De Boer T; Hazelaar MJ; Anazawa H; Harms N; Oltmann LF; Stouthamer AH J Bacteriol; 1991 Nov; 173(21):6948-61. PubMed ID: 1657871 [TBL] [Abstract][Full Text] [Related]
15. Intramolecular electron transfer in a bacterial sulfite dehydrogenase. Feng C; Kappler U; Tollin G; Enemark JH J Am Chem Soc; 2003 Dec; 125(48):14696-7. PubMed ID: 14640631 [TBL] [Abstract][Full Text] [Related]
16. Bacterial sulfite dehydrogenases in organotrophic metabolism: separation and identification in Cupriavidus necator H16 and in Delftia acidovorans SPH-1. Denger K; Weinitschke S; Smits THM; Schleheck D; Cook AM Microbiology (Reading); 2008 Jan; 154(Pt 1):256-263. PubMed ID: 18174144 [TBL] [Abstract][Full Text] [Related]
17. Structure of the cytochrome complex SoxXA of Paracoccus pantotrophus, a heme enzyme initiating chemotrophic sulfur oxidation. Dambe T; Quentmeier A; Rother D; Friedrich C; Scheidig AJ J Struct Biol; 2005 Dec; 152(3):229-34. PubMed ID: 16297640 [TBL] [Abstract][Full Text] [Related]
18. Purification and characterization of a periplasmic Thiosulfate dehydrogenase from the obligately autotrophic Thiobacillus sp. W5. Visser JM; de Jong GA; Robertson LA; Kuenen JG Arch Microbiol; 1996 Dec; 166(6):372-8. PubMed ID: 9082913 [TBL] [Abstract][Full Text] [Related]
19. Production of a recombinant hybrid hemoflavoprotein: engineering a functional NADH:cytochrome c reductase. Barber MJ; Quinn GB Protein Expr Purif; 2001 Nov; 23(2):348-58. PubMed ID: 11676611 [TBL] [Abstract][Full Text] [Related]
20. Identification and sequence analysis of the soxB gene essential for sulfur oxidation of Paracoccus denitrificans GB17. Wodara C; Kostka S; Egert M; Kelly DP; Friedrich CG J Bacteriol; 1994 Oct; 176(20):6188-91. PubMed ID: 7928987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]