These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1079574)

  • 21. Changes of thick filament structure during contraction of frog striated muscle.
    Yagi N; O'Brien EJ; Matsubara I
    Biophys J; 1981 Jan; 33(1):121-37. PubMed ID: 6974013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscle. A fine time for contractual alterations.
    Huxley A
    Nature; 1992 May; 357(6374):110. PubMed ID: 1579159
    [No Abstract]   [Full Text] [Related]  

  • 23. Molecular mechanism of actin-myosin motor in muscle.
    Koubassova NA; Tsaturyan AK
    Biochemistry (Mosc); 2011 Dec; 76(13):1484-506. PubMed ID: 22339600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Equatorial x-ray intensities and isometric force levels in frog sartorius muscle.
    Yu LP; Hartt JE; Podolsky RJ
    J Mol Biol; 1979 Jul; 132(1):53-67. PubMed ID: 316011
    [No Abstract]   [Full Text] [Related]  

  • 25. Structure and force generation in muscle.
    Squire JM
    Nature; 1979 Sep; 281(5727):99-100. PubMed ID: 157436
    [No Abstract]   [Full Text] [Related]  

  • 26. Elastic bending and active tilting of myosin heads during muscle contraction.
    Dobbie I; Linari M; Piazzesi G; Reconditi M; Koubassova N; Ferenczi MA; Lombardi V; Irving M
    Nature; 1998 Nov; 396(6709):383-7. PubMed ID: 9845077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An x-ray diffraction study on the ADP-induced conformational change in skeletal muscle myosin.
    Horiuti K; Yagi N; Takemori S; Yamaguchi M
    J Biochem; 2003 Feb; 133(2):207-10. PubMed ID: 12761183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time-resolved x-ray diffraction studies on the intensity changes of the 5.9 and 5.1 nm actin layer lines from frog skeletal muscle during an isometric tetanus using synchrotron radiation.
    Wakabayashi K; Tanaka H; Amemiya Y; Fujishima A; Kobayashi T; Hamanaka T; Sugi H; Mitsui T
    Biophys J; 1985 Jun; 47(6):847-50. PubMed ID: 3874653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Analysis of the equatorial section of X-ray diffraction patterns of striated muscles of tarantulas under various experimental conditions].
    Sosa H; Pante N; PadrĂ³n R
    Acta Cient Venez; 1988; 39(1):51-9. PubMed ID: 3239340
    [No Abstract]   [Full Text] [Related]  

  • 30. Alpbach workshop on the dynamics of motile systems, 4-10 April 1992.
    Taylor EW
    J Muscle Res Cell Motil; 1992 Oct; 13(5):581. PubMed ID: 1360984
    [No Abstract]   [Full Text] [Related]  

  • 31. X-ray evidence that in contracting live frog muscles there exist two distinct populations of myosin heads.
    Bordas J; Lowy J; Svensson A; Harries JE; Diakun GP; Gandy J; Miles C; Mant GR; Towns-Andrews E
    Biophys J; 1995 Apr; 68(4 Suppl):99S-104S; discussion 104S-105S. PubMed ID: 7787116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular control mechanisms in muscle contraction.
    Weber A; Murray JM
    Physiol Rev; 1973 Jul; 53(3):612-73. PubMed ID: 4577547
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of stretch and release on equatorial X-ray diffraction during a twitch contraction of frog skeletal muscle.
    Iwamoto H; Kobayashi T; Amemiya Y; Wakabayashi K
    Biophys J; 1995 Jan; 68(1):227-34. PubMed ID: 7711245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of stretch on the equatorial X-ray diffraction pattern from frog skeletal muscle in rigor.
    Tanaka H; Sugi H; Hashizume H
    Adv Exp Med Biol; 1984; 170():203-5. PubMed ID: 6741696
    [No Abstract]   [Full Text] [Related]  

  • 35. Effects of solution tonicity on crossbridge properties and myosin lever arm disposition in intact frog muscle fibres.
    Colombini B; Bagni MA; Cecchi G; Griffiths PJ
    J Physiol; 2007 Jan; 578(Pt 1):337-46. PubMed ID: 17023505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A structural origin of latency relaxation in frog skeletal muscle.
    Yagi N
    Biophys J; 2007 Jan; 92(1):162-71. PubMed ID: 17028137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural changes in the muscle thin filament during contractions caused by single and double electrical pulses.
    Matsuo T; Yagi N
    J Mol Biol; 2008 Nov; 383(5):1019-36. PubMed ID: 18817786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical formalism for the sliding filament model of contraction of striated muscle. Part II.
    Hill TL
    Prog Biophys Mol Biol; 1975; 29(2):105-59. PubMed ID: 1135417
    [No Abstract]   [Full Text] [Related]  

  • 39. Structural changes during contraction in vertebrate skeletal muscle as studied by time-resolved X-ray diffraction technique.
    Sugi H; Tanaka H; Wakabayashi K; Kobayashi T; Iwamoto H; Hamanaka T; Mitsui T; Amemiya Y
    Biomed Biochim Acta; 1986; 45(1-2):S15-22. PubMed ID: 3485970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The working stroke of myosin crossbridges.
    Huxley H
    Biophys J; 1995 Apr; 68(4 Suppl):55S-56S; discussion 57S-58S. PubMed ID: 7787101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.