BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10795806)

  • 1. Independent synthesis of aminophospholipid-linked maillard products.
    Utzmann CM; Lederer MO
    Carbohydr Res; 2000 Apr; 325(3):157-68. PubMed ID: 10795806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of a phospholipid-linked pyrrolecarbaldehyde from model reactions of D-glucose and 3-deoxyglucosone with phosphatidyl ethanolamine.
    Lederer MO; Baumann M
    Bioorg Med Chem; 2000 Jan; 8(1):115-21. PubMed ID: 10968270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidative Maillard Reaction Products Generated in Processed Aged Garlic Extract.
    Wakamatsu J; Stark TD; Hofmann T
    J Agric Food Chem; 2019 Feb; 67(8):2190-2200. PubMed ID: 30715866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and quantification of aminophospholipid-linked Maillard compounds in model systems and egg yolk products.
    Utzmann CM; Lederer MO
    J Agric Food Chem; 2000 Apr; 48(4):1000-8. PubMed ID: 10775341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmentation of blood lipid glycation and lipid oxidation in diabetic patients.
    Suzuki K; Nakagawa K; Miyazawa T
    Clin Chem Lab Med; 2014 Jan; 52(1):47-52. PubMed ID: 23454716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural, biological and biophysical properties of glycated and glycoxidized phosphatidylethanolamines.
    Annibal A; Riemer T; Jovanovic O; Westphal D; Griesser E; Pohl EE; Schiller J; Hoffmann R; Fedorova M
    Free Radic Biol Med; 2016 Jun; 95():293-307. PubMed ID: 27012418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and quantification of phosphatidylethanolamine-derived glucosylamines and aminoketoses from human erythrocytes--influence of glycation products on lipid peroxidation.
    Breitling-Utzmann CM; Unger A; Friedl DA; Lederer MO
    Arch Biochem Biophys; 2001 Jul; 391(2):245-54. PubMed ID: 11437356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The quantification of free Amadori compounds and amino acids allows to model the bound Maillard reaction products formation in soybean products.
    Troise AD; Wiltafsky M; Fogliano V; Vitaglione P
    Food Chem; 2018 May; 247():29-38. PubMed ID: 29277225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a novel advanced glycation end product derived from lactaldehyde.
    Fujimoto S; Murakami Y; Miyake H; Hayase F; Watanabe H
    Biosci Biotechnol Biochem; 2019 Jun; 83(6):1136-1145. PubMed ID: 30822216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein modification by the degradation products of ascorbate: formation of a novel pyrrole from the Maillard reaction of L-threose with proteins.
    Nagaraj RH; Monnier VM
    Biochim Biophys Acta; 1995 Nov; 1253(1):75-84. PubMed ID: 7492603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion-trap tandem mass spectrometric analysis of Amadori-glycated phosphatidylethanolamine in human plasma with or without diabetes.
    Nakagawa K; Oak JH; Higuchi O; Tsuzuki T; Oikawa S; Otani H; Mune M; Cai H; Miyazawa T
    J Lipid Res; 2005 Nov; 46(11):2514-24. PubMed ID: 16150834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to Nepsilon-carboxymethyl-lysine- and Nepsilon-(1-carboxyethyl)lysine-modified albumin.
    Ahmed N; Argirov OK; Minhas HS; Cordeiro CA; Thornalley PJ
    Biochem J; 2002 May; 364(Pt 1):1-14. PubMed ID: 11988070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of protein bound Maillard reaction end-products and free Amadori compounds in low lactose milk in presence of fructosamine oxidase I.
    Troise AD; Buonanno M; Fiore A; Monti SM; Fogliano V
    Food Chem; 2016 Dec; 212():722-9. PubMed ID: 27374589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Milk-Derived Amadori Products in Feces of Formula-Fed Infants.
    Sillner N; Walker A; Hemmler D; Bazanella M; Heinzmann SS; Haller D; Schmitt-Kopplin P
    J Agric Food Chem; 2019 Jul; 67(28):8061-8069. PubMed ID: 31264412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LC-MS/MS analysis of carboxymethylated and carboxyethylated phosphatidylethanolamines in human erythrocytes and blood plasma.
    Shoji N; Nakagawa K; Asai A; Fujita I; Hashiura A; Nakajima Y; Oikawa S; Miyazawa T
    J Lipid Res; 2010 Aug; 51(8):2445-53. PubMed ID: 20386060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural characterization of a "signature" phosphatidylethanolamine as the major 10-hydroxy stearic acid-containing lipid of Cryptosporidium parvum oocysts.
    Schrum DP; Alugupalli S; Kelly ST; White DC; Fayer R
    Lipids; 1997 Jul; 32(7):789-93. PubMed ID: 9252970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-acylphosphatidylethanolamine synthesis in plants: occurrence, molecular composition, and phospholipid origin.
    Chapman KD; Moore TS
    Arch Biochem Biophys; 1993 Feb; 301(1):21-33. PubMed ID: 8442663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant activity of Maillard type reaction products between phosphatidylethanolamine and glucose.
    Shrestha K; De Meulenaer B
    Food Chem; 2014 Oct; 161():8-15. PubMed ID: 24837915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatographic evidence for Amadori product formation in rat liver aminophospholipids.
    Pamplona R; Bellmunt MJ; Portero M; Riba D; Prat J
    Life Sci; 1995; 57(9):873-9. PubMed ID: 7630316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transepithelial flux of early and advanced glycation compounds across Caco-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems.
    Grunwald S; Krause R; Bruch M; Henle T; Brandsch M
    Br J Nutr; 2006 Jun; 95(6):1221-8. PubMed ID: 16768847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.