These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10797241)

  • 1. A hollow-fiber membrane bioreactor for the removal of trichloroethylene from the vapor phase.
    Pressman JG; Georgiou G; Speitel GE
    Biotechnol Bioeng; 2000 Jun; 68(5):548-56. PubMed ID: 10797241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of efficient trichloroethylene biodegradation in a hollow-fiber membrane bioreactor.
    Pressman JG; Georgiou G; Speitel GE
    Biotechnol Bioeng; 1999 Mar; 62(6):681-92. PubMed ID: 9951524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scale-up considerations for a hollow-fiber-membrane bioreactor treating trichloroethylene-contaminated water.
    Pressman JG; Georgiou G; Speitel GE
    Water Environ Res; 2005; 77(5):533-42. PubMed ID: 16274088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b.
    Hwang JW; Choi YB; Park S; Choi CY; Lee EY
    Biodegradation; 2007 Feb; 18(1):91-101. PubMed ID: 16467965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADH-Regulated metabolic model for growth of Methylosinus trichosporiumOB3b. Cometabolic degradation of trichloroethene and optimization of bioreactor system performance.
    Sipkema EM; de Koning W; Ganzeveld KJ; Janssen DB; Beenackers AA
    Biotechnol Prog; 2000; 16(2):189-98. PubMed ID: 10753443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pilot-scale demonstration of a two-stage methanotrophic bioreactor for biodegradation of trichloroethylene in groundwater.
    Dobbins DC; Peltola J; Kustritz JM; Chresand TJ; Preston JC
    J Air Waste Manag Assoc; 1995 Jan; 45(1):12-9. PubMed ID: 15658162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas-phase trichloroethylene removal by Rhodococcus opacus using an airlift bioreactor and its modeling by artificial neural network.
    Baskaran D; Sinharoy A; Pakshirajan K; Rajamanickam R
    Chemosphere; 2020 May; 247():125806. PubMed ID: 32069707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of Trichloroethylene by Methanol-Grown Cultures of Methylosinus trichosporium OB3b PP358.
    Fitch MW; Speitel GE; Georgiou G
    Appl Environ Microbiol; 1996 Mar; 62(3):1124-8. PubMed ID: 16535263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cometabolic degradation of TCE vapors in a foamed emulsion bioreactor.
    Kan E; Deshusses MA
    Environ Sci Technol; 2006 Feb; 40(3):1022-8. PubMed ID: 16509352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An innovative membrane bioreactor for methane biohydroxylation.
    Pen N; Soussan L; Belleville MP; Sanchez J; Charmette C; Paolucci-Jeanjean D
    Bioresour Technol; 2014 Dec; 174():42-52. PubMed ID: 25463780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass transfer and benzene removal from air using latex rubber tubing and a hollow-fiber membrane module.
    Fitch M; Neeman J; England E
    Appl Biochem Biotechnol; 2003 Mar; 104(3):199-214. PubMed ID: 12665671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methanol suppression of trichloroethylene degradation by Methylosinus trichosporium (OB3b) and methane-oxidizing mixed cultures.
    Eng W; Palumbo AV; Sriharan S; Strandberg GW
    Appl Biochem Biotechnol; 1991; 28-29():887-99. PubMed ID: 1929390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field evaluation of in situ source reduction of trichloroethylene in groundwater using bioenhanced in-well vapor stripping.
    Goltz MN; Gandhi RK; Gorelick SM; Hopkins GD; Smith LH; Timmins BH; McCarty PL
    Environ Sci Technol; 2005 Nov; 39(22):8963-70. PubMed ID: 16323801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental studies and neural network modeling of the removal of trichloroethylene vapor in a biofilter.
    Baskaran D; Rajamanickam R; Pakshirajan K
    J Environ Manage; 2019 Nov; 250():109385. PubMed ID: 31521920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cometabolism of chlorinated solvents and binary chlorinated solvent mixtures using M. trichosporium OB3b PP358.
    Aziz CE; Georgiou G; Speitel GE
    Biotechnol Bioeng; 1999 Oct; 65(1):100-7. PubMed ID: 10440676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.
    Tabernacka A; Zborowska E; Lebkowska M; Borawski M
    J Hazard Mater; 2014 Jan; 264():363-9. PubMed ID: 24316808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems.
    Kocamemi BA; Ceçen F
    Bioresour Technol; 2010 Jan; 101(1):430-3. PubMed ID: 19729301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of trichloroethylene (TCE) in a membrane biofilter.
    Parvatiyar MG; Govind R; Bishop DF
    Biotechnol Bioeng; 1996 Apr; 50(1):57-64. PubMed ID: 18626899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of trichloroethene-contaminated water with a fluidized-bed bioreactor.
    Segar RL; Leung SY; Vivek SA
    Ann N Y Acad Sci; 1997 Nov; 829():83-96. PubMed ID: 9472314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane process for biological treatment of contaminated gas streams.
    Ergas SJ; Shumway L; Fitch MW; Neemann JJ
    Biotechnol Bioeng; 1999 May; 63(4):431-41. PubMed ID: 10099623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.