BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 10797599)

  • 1. Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human.
    McLysaght A; Enright AJ; Skrabanek L; Wolfe KH
    Yeast; 2000 Apr; 17(1):22-36. PubMed ID: 10797599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and expression analysis of an interleukin-7 homologue in the Japanese pufferfish, Takifugu rubripes.
    Kono T; Bird S; Sonoda K; Savan R; Secombes CJ; Sakai M
    FEBS J; 2008 Mar; 275(6):1213-26. PubMed ID: 18266867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the conservation of synteny between Fugu and human chromosome 12.
    Montpetit A; Wilson MD; Chevrette M; Koop BF; Sinnett D
    BMC Genomics; 2003 Jul; 4(1):30. PubMed ID: 12877756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly conserved regulatory elements around the SHH gene may contribute to the maintenance of conserved synteny across human chromosome 7q36.3.
    Goode DK; Snell P; Smith SF; Cooke JE; Elgar G
    Genomics; 2005 Aug; 86(2):172-81. PubMed ID: 15939571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome.
    Brenner S; Elgar G; Sandford R; Macrae A; Venkatesh B; Aparicio S
    Nature; 1993 Nov; 366(6452):265-8. PubMed ID: 8232585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin and diversity of the SOX transcription factor gene family: genome-wide analysis in Fugu rubripes.
    Koopman P; Schepers G; Brenner S; Venkatesh B
    Gene; 2004 Mar; 328():177-86. PubMed ID: 15019997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regions of human chromosome 2 (2q32-q35) and mouse chromosome 1 show synteny with the pufferfish genome (Fugu rubripes).
    Schofield JP; Elgar G; Greystrong J; Lye G; Deadman R; Micklem G; King A; Brenner S; Vaudin M
    Genomics; 1997 Oct; 45(1):158-67. PubMed ID: 9339372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of loss and gain of introns in the compact genomes of pufferfishes (Fugu and Tetraodon).
    Loh YH; Brenner S; Venkatesh B
    Mol Biol Evol; 2008 Mar; 25(3):526-35. PubMed ID: 18089580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The identification and characterization of microsatellites in the compact genome of the Japanese pufferfish, Fugu rubripes: perspectives in functional and comparative genomic analyses.
    Edwards YJ; Elgar G; Clark MS; Bishop MJ
    J Mol Biol; 1998 May; 278(4):843-54. PubMed ID: 9614946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An enigmatic fourth runt domain gene in the fugu genome: ancestral gene loss versus accelerated evolution.
    Glusman G; Kaur A; Hood L; Rowen L
    BMC Evol Biol; 2004 Nov; 4():43. PubMed ID: 15527507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic structure and nucleotide sequence of the p55 gene of the puffer fish Fugu rubripes.
    Elgar G; Rattray F; Greystrong J; Brenner S
    Genomics; 1995 Jun; 27(3):442-6. PubMed ID: 7558025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and sequencing of complement component C9 and its linkage to DOC-2 in the pufferfish Fugu rubripes.
    Yeo GS; Elgar G; Sandford R; Brenner S
    Gene; 1997 Oct; 200(1-2):203-11. PubMed ID: 9373156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of the ETV6 gene in vertebrate genomes from pufferfish to human.
    Montpetit A; Sinnett D
    Oncogene; 2001 Jun; 20(26):3437-42. PubMed ID: 11423994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The melanocortin system in Fugu: determination of POMC/AGRP/MCR gene repertoire and synteny, as well as pharmacology and anatomical distribution of the MCRs.
    Klovins J; Haitina T; Fridmanis D; Kilianova Z; Kapa I; Fredriksson R; Gallo-Payet N; Schiƶth HB
    Mol Biol Evol; 2004 Mar; 21(3):563-79. PubMed ID: 14694081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome.
    Mural RJ; Adams MD; Myers EW; Smith HO; Miklos GL; Wides R; Halpern A; Li PW; Sutton GG; Nadeau J; Salzberg SL; Holt RA; Kodira CD; Lu F; Chen L; Deng Z; Evangelista CC; Gan W; Heiman TJ; Li J; Li Z; Merkulov GV; Milshina NV; Naik AK; Qi R; Shue BC; Wang A; Wang J; Wang X; Yan X; Ye J; Yooseph S; Zhao Q; Zheng L; Zhu SC; Biddick K; Bolanos R; Delcher AL; Dew IM; Fasulo D; Flanigan MJ; Huson DH; Kravitz SA; Miller JR; Mobarry CM; Reinert K; Remington KA; Zhang Q; Zheng XH; Nusskern DR; Lai Z; Lei Y; Zhong W; Yao A; Guan P; Ji RR; Gu Z; Wang ZY; Zhong F; Xiao C; Chiang CC; Yandell M; Wortman JR; Amanatides PG; Hladun SL; Pratts EC; Johnson JE; Dodson KL; Woodford KJ; Evans CA; Gropman B; Rusch DB; Venter E; Wang M; Smith TJ; Houck JT; Tompkins DE; Haynes C; Jacob D; Chin SH; Allen DR; Dahlke CE; Sanders R; Li K; Liu X; Levitsky AA; Majoros WH; Chen Q; Xia AC; Lopez JR; Donnelly MT; Newman MH; Glodek A; Kraft CL; Nodell M; Ali F; An HJ; Baldwin-Pitts D; Beeson KY; Cai S; Carnes M; Carver A; Caulk PM; Center A; Chen YH; Cheng ML; Coyne MD; Crowder M; Danaher S; Davenport LB; Desilets R; Dietz SM; Doup L; Dullaghan P; Ferriera S; Fosler CR; Gire HC; Gluecksmann A; Gocayne JD; Gray J; Hart B; Haynes J; Hoover J; Howland T; Ibegwam C; Jalali M; Johns D; Kline L; Ma DS; MacCawley S; Magoon A; Mann F; May D; McIntosh TC; Mehta S; Moy L; Moy MC; Murphy BJ; Murphy SD; Nelson KA; Nuri Z; Parker KA; Prudhomme AC; Puri VN; Qureshi H; Raley JC; Reardon MS; Regier MA; Rogers YH; Romblad DL; Schutz J; Scott JL; Scott R; Sitter CD; Smallwood M; Sprague AC; Stewart E; Strong RV; Suh E; Sylvester K; Thomas R; Tint NN; Tsonis C; Wang G; Wang G; Williams MS; Williams SM; Windsor SM; Wolfe K; Wu MM; Zaveri J; Chaturvedi K; Gabrielian AE; Ke Z; Sun J; Subramanian G; Venter JC; Pfannkoch CM; Barnstead M; Stephenson LD
    Science; 2002 May; 296(5573):1661-71. PubMed ID: 12040188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of a 229-kb medaka genomic region, containing the zic1 and zic4 genes, with Fugu, human, and mouse.
    Ohtsuka M; Kikuchi N; Ozato K; Inoko H; Kimura M
    Genomics; 2004 Jun; 83(6):1063-71. PubMed ID: 15177559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts.
    Yu WP; Yew K; Rajasegaran V; Venkatesh B
    BMC Evol Biol; 2007 Mar; 7():49. PubMed ID: 17394664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fugu and human sequence comparison identifies novel human genes and conserved non-coding sequences.
    Gilligan P; Brenner S; Venkatesh B
    Gene; 2002 Jul; 294(1-2):35-44. PubMed ID: 12234665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics of the SOX9 region in human and Fugu rubripes: conservation of short regulatory sequence elements within large intergenic regions.
    Bagheri-Fam S; Ferraz C; Demaille J; Scherer G; Pfeifer D
    Genomics; 2001 Nov; 78(1-2):73-82. PubMed ID: 11707075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.