BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 10797613)

  • 1. Evaluation of glutathione-sensitive fluorescent dyes in cortical culture.
    Tauskela JS; Hewitt K; Kang LP; Comas T; Gendron T; Hakim A; Hogan M; Durkin J; Morley P
    Glia; 2000 Jun; 30(4):329-41. PubMed ID: 10797613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of fluorescent dyes for measuring intracellular glutathione content in primary cultures of human neurons and neuroblastoma SH-SY5Y.
    Sebastià J; Cristòfol R; Martín M; Rodríguez-Farré E; Sanfeliu C
    Cytometry A; 2003 Jan; 51(1):16-25. PubMed ID: 12500301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress.
    Kaur P; Aschner M; Syversen T
    Toxicology; 2007 Feb; 230(2-3):164-77. PubMed ID: 17169475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione levels in primary glial cultures: monochlorobimane provides evidence of cell type-specific distribution.
    Chatterjee S; Noack H; Possel H; Keilhoff G; Wolf G
    Glia; 1999 Aug; 27(2):152-61. PubMed ID: 10417814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative imaging of glutathione in hippocampal neurons and glia in culture using monochlorobimane.
    Keelan J; Allen NJ; Antcliffe D; Pal S; Duchen MR
    J Neurosci Res; 2001 Dec; 66(5):873-84. PubMed ID: 11746414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury.
    Shanker G; Aschner JL; Syversen T; Aschner M
    Brain Res Mol Brain Res; 2004 Sep; 128(1):48-57. PubMed ID: 15337317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The antioxidant glutathione in the fish cell lines EPC and BCF-2: response to model pro-oxidants as measured by three different fluorescent dyes.
    Jos A; Cameán AM; Pflugmacher S; Segner H
    Toxicol In Vitro; 2009 Apr; 23(3):546-53. PubMed ID: 19444932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity.
    Gegg ME; Clark JB; Heales SJ
    Brain Res; 2005 Mar; 1036(1-2):1-6. PubMed ID: 15725395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of fiber cell globulization and hyperglycemia-induced lens opacification by aminopeptidase inhibitor bestatin.
    Chandra D; Ramana KV; Wang L; Christensen BN; Bhatnagar A; Srivastava SK
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2285-92. PubMed ID: 12091429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential specificity of monochlorobimane for isozymes of human and rodent glutathione S-transferases.
    Cook JA; Iype SN; Mitchell JB
    Cancer Res; 1991 Mar; 51(6):1606-12. PubMed ID: 1998951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 5'-deiodinase activity in cultured glial and fibroblastic cells from the cerebella of newborn rats.
    Pruvost V; Valentin S; Cheynel I; Vigouroux E; Bézine MF
    Horm Metab Res; 1999 Nov; 31(11):591-6. PubMed ID: 10598825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes.
    deAzevedo LC; Fallet C; Moura-Neto V; Daumas-Duport C; Hedin-Pereira C; Lent R
    J Neurobiol; 2003 Jun; 55(3):288-98. PubMed ID: 12717699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basic fibroblast growth factor (bFGF) acts on both neurons and glia to mediate the neurotrophic effects of astrocytes on LHRH neurons in culture.
    Gallo F; Morale MC; Spina-Purrello V; Tirolo C; Testa N; Farinella Z; Avola R; Beaudet A; Marchetti B
    Synapse; 2000 Jun; 36(4):233-53. PubMed ID: 10819902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Astrocyte control of fetal cortical neuron glutathione homeostasis: up-regulation by ethanol.
    Rathinam ML; Watts LT; Stark AA; Mahimainathan L; Stewart J; Schenker S; Henderson GI
    J Neurochem; 2006 Mar; 96(5):1289-300. PubMed ID: 16464233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes in the cellular distribution of glutathione and glutathione S-transferases in the murine nervous system.
    Beiswanger CM; Diegmann MH; Novak RF; Philbert MA; Graessle TL; Reuhl KR; Lowndes HE
    Neurotoxicology; 1995; 16(3):425-40. PubMed ID: 8584275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-(Pentafluorobenzoylamino)fluorescein: A selective substrate for the determination of glutathione concentration and glutathione S-transferase activity.
    Arttamangkul S; Bhalgat MK; Haugland RP; Diwu Z; Liu J; Klaubert DH; Haugland RP
    Anal Biochem; 1999 May; 269(2):410-7. PubMed ID: 10222018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method of quantifying glutathione levels in freshly isolated single superfused rat cardiomyocytes.
    King N; Korolchuk S; McGivan JD; Suleiman MS
    J Pharmacol Toxicol Methods; 2004; 50(3):215-22. PubMed ID: 15519908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking.
    Hughes EG; Maguire JL; McMinn MT; Scholz RE; Sutherland ML
    Brain Res Mol Brain Res; 2004 May; 124(2):114-23. PubMed ID: 15135219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and rapid export of the monochlorobimane-glutathione conjugate in cultured rat astrocytes.
    Waak J; Dringen R
    Neurochem Res; 2006 Dec; 31(12):1409-16. PubMed ID: 17089195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Astrocytes protect neurons from ethanol-induced oxidative stress and apoptotic death.
    Watts LT; Rathinam ML; Schenker S; Henderson GI
    J Neurosci Res; 2005 Jun; 80(5):655-66. PubMed ID: 15880562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.