These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10797893)

  • 1. Intercepting moving objects during self-motion: effects of environmental changes.
    Lenoir M; Savelsbergh GJ; Musch E; Thiery E; Uyttenhove J; Janssens M
    Res Q Exerc Sport; 1999 Dec; 70(4):349-60. PubMed ID: 10797893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postural adjustments and bearing angle use in interceptive actions.
    Chohan A; Savelsbergh GJ; van Kampen P; Wind M; Verheul MH
    Exp Brain Res; 2006 May; 171(1):47-55. PubMed ID: 16328257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rate of change of angular bearing as the relevant property in a horizontal interception task during locomotion.
    Lenoir M; Musch E; Thiery E; Savelsbergh GJ
    J Mot Behav; 2002 Dec; 34(4):385-404. PubMed ID: 12446252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Children's use of the bearing angle in interceptive actions.
    Chohan A; Verheul MH; Van Kampen PM; Wind M; Savelsbergh GJ
    J Mot Behav; 2008 Jan; 40(1):18-28. PubMed ID: 18316294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The visual control of ball interception during human locomotion.
    Chardenon A; Montagne G; Buekers MJ; Laurent M
    Neurosci Lett; 2002 Dec; 334(1):13-6. PubMed ID: 12431764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of task constraints on the organization of interception movements.
    Fayt V; Bootsma RJ; Marteniuk RG; Mackenzie CL; Laurent M
    J Sports Sci; 1997 Dec; 15(6):581-6. PubMed ID: 9486435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The perceptual control of goal-directed locomotion: a common control architecture for interception and navigation?
    Chardenon A; Montagne G; Laurent M; Bootsma RJ
    Exp Brain Res; 2004 Sep; 158(1):100-8. PubMed ID: 15042262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust solution for dealing with environmental changes in intercepting moving balls.
    Chardenon A; Montagne G; Laurent M; Bootsma RJ
    J Mot Behav; 2005 Jan; 37(1):52-64. PubMed ID: 15642692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External timing constraints facilitate performance of everyday interceptive actions in children with Spastic Hemiparetic Cerebral Palsy.
    Ricken AX; Savelsbergh GJ; Bennett SJ
    Neurosci Lett; 2006 Dec; 410(3):187-92. PubMed ID: 17101219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anticipating the effects of gravity when intercepting moving objects: differentiating up and down based on nonvisual cues.
    Senot P; Zago M; Lacquaniti F; McIntyre J
    J Neurophysiol; 2005 Dec; 94(6):4471-80. PubMed ID: 16120661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intercepting Moving Objects During Self-Motion.
    Lenoir M; Musch E; Janssens M; Thiery E; Uyttenhove J
    J Mot Behav; 1999 Mar; 31(1):55-67. PubMed ID: 11177619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual factors in hitting and catching.
    Regan D
    J Sports Sci; 1997 Dec; 15(6):533-58. PubMed ID: 9486432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Children's age-related speed-accuracy strategies in intercepting moving targets in two dimensions.
    Rothenberg-Cunningham A; Newell KM
    Res Q Exerc Sport; 2013 Mar; 84(1):79-87. PubMed ID: 23611011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is perception of self-motion speed a necessary condition for intercepting a moving target while walking?
    Morice AH; Wallet G; Montagne G
    Neurosci Lett; 2014 Apr; 566():315-9. PubMed ID: 24594200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexibility in intercepting moving objects.
    Brenner E; Smeets JB
    J Vis; 2007 Nov; 7(5):14.1-17. PubMed ID: 18217854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of interception of moving targets by chimpanzees (Pan troglodytes) in an automated task.
    Iversen IH; Matsuzawa T
    Anim Cogn; 2003 Sep; 6(3):169-83. PubMed ID: 12761656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-motion impairs multiple-object tracking.
    Thomas LE; Seiffert AE
    Cognition; 2010 Oct; 117(1):80-6. PubMed ID: 20659732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of motion coherence manipulations on the synchronization level of a perception-action task.
    Ceux T; Wagemans J; Rosas P; Montagne G; Buekers M
    Behav Brain Res; 2005 Jul; 162(1):83-9. PubMed ID: 15922068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indirect interception actions by blind and sighted perceivers: the role of modality and tau.
    Vernat JP; Gordon MS
    Scand J Psychol; 2011 Feb; 52(1):83-92. PubMed ID: 20642737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of visual motion on interceptive actions and perception.
    Marinovic W; Plooy AM; Arnold DH
    Vision Res; 2012 May; 60():73-8. PubMed ID: 22480880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.