These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 10798402)

  • 1. Origin and functional impact of dark noise in retinal cones.
    Rieke F; Baylor DA
    Neuron; 2000 Apr; 26(1):181-6. PubMed ID: 10798402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The limit of photoreceptor sensitivity: molecular mechanisms of dark noise in retinal cones.
    Holcman D; Korenbrot JI
    J Gen Physiol; 2005 Jun; 125(6):641-60. PubMed ID: 15928405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of 11-cis 13-demethylretinal on phototransduction in bleach-adapted rod and cone photoreceptors.
    Corson DW; Kefalov VJ; Cornwall MC; Crouch RK
    J Gen Physiol; 2000 Aug; 116(2):283-97. PubMed ID: 10919871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of visual pigment properties in rod and cone phototransduction.
    Kefalov V; Fu Y; Marsh-Armstrong N; Yau KW
    Nature; 2003 Oct; 425(6957):526-31. PubMed ID: 14523449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response sensitivity and voltage gain of the rod- and cone-bipolar cell synapses in dark-adapted tiger salamander retina.
    Yang XL; Wu SM
    J Neurophysiol; 1997 Nov; 78(5):2662-73. PubMed ID: 9356416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apo-Opsin and Its Dark Constitutive Activity across Retinal Cone Subtypes.
    Luo DG; Silverman D; Frederiksen R; Adhikari R; Cao LH; Oatis JE; Kono M; Cornwall MC; Yau KW
    Curr Biol; 2020 Dec; 30(24):4921-4931.e5. PubMed ID: 33065015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics.
    Schneeweis DM; Schnapf JL
    J Neurosci; 1999 Feb; 19(4):1203-16. PubMed ID: 9952398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling properties of a short-wave cone visual pigment and its role in phototransduction.
    Shi G; Yau KW; Chen J; Kefalov VJ
    J Neurosci; 2007 Sep; 27(38):10084-93. PubMed ID: 17881515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origins of the phototransduction delay as inferred from stochastic and deterministic simulation of the amplification cascade.
    Rotov AY; Astakhova LA; Firsov ML; Govardovskii VI
    Mol Vis; 2017; 23():416-430. PubMed ID: 28744093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rod and cone photoreceptors: molecular basis of the difference in their physiology.
    Kawamura S; Tachibanaki S
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Aug; 150(4):369-77. PubMed ID: 18514002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breaking the covalent bond--a pigment property that contributes to desensitization in cones.
    Kefalov VJ; Estevez ME; Kono M; Goletz PW; Crouch RK; Cornwall MC; Yau KW
    Neuron; 2005 Jun; 46(6):879-90. PubMed ID: 15953417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of dark-adapted sensitivity and light-adaptation in photoreceptors with A1 visual pigments: a comparison of frog L-cones and rods.
    Heikkinen H; Nymark S; Donner K; Koskelainen A
    Vision Res; 2009 Jul; 49(14):1717-28. PubMed ID: 19348836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromophore switch from 11-cis-dehydroretinal (A2) to 11-cis-retinal (A1) decreases dark noise in salamander red rods.
    Ala-Laurila P; Donner K; Crouch RK; Cornwall MC
    J Physiol; 2007 Nov; 585(Pt 1):57-74. PubMed ID: 17884920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rods are rods and cones cones, and (never) the twain shall meet.
    Pugh EN
    Neuron; 2001 Nov; 32(3):375-6. PubMed ID: 11709146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses.
    Tachibanaki S; Tsushima S; Kawamura S
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):14044-9. PubMed ID: 11707584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings.
    Nikonov SS; Kholodenko R; Lem J; Pugh EN
    J Gen Physiol; 2006 Apr; 127(4):359-74. PubMed ID: 16567464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin and effect of phototransduction noise in primate cone photoreceptors.
    Angueyra JM; Rieke F
    Nat Neurosci; 2013 Nov; 16(11):1692-700. PubMed ID: 24097042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling.
    Astakhova L; Firsov M; Govardovskii V
    Mol Vis; 2015; 21():244-63. PubMed ID: 25866462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dark light, rod saturation, and the absolute and incremental sensitivity of mouse cone vision.
    Naarendorp F; Esdaille TM; Banden SM; Andrews-Labenski J; Gross OP; Pugh EN
    J Neurosci; 2010 Sep; 30(37):12495-507. PubMed ID: 20844144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.