BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 10798675)

  • 1. Characterization of rhodopsin mis-sorting and constitutive activation in a transgenic rat model of retinitis pigmentosa.
    Green ES; Menz MD; LaVail MM; Flannery JG
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1546-53. PubMed ID: 10798675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A diffusible factor from normal retinal cells promotes rod photoreceptor survival in an in vitro model of retinitis pigmentosa.
    Streichert LC; Birnbach CD; Reh TA
    J Neurobiol; 1999 Jun; 39(4):475-90. PubMed ID: 10380070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodopsin transgenic pigs as a model for human retinitis pigmentosa.
    Li ZY; Wong F; Chang JH; Possin DE; Hao Y; Petters RM; Milam AH
    Invest Ophthalmol Vis Sci; 1998 Apr; 39(5):808-19. PubMed ID: 9538889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P23H rhodopsin transgenic rat: correlation of retinal function with histopathology.
    Machida S; Kondo M; Jamison JA; Khan NW; Kononen LT; Sugawara T; Bush RA; Sieving PA
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):3200-9. PubMed ID: 10967084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of cone molecular markers in rhodopsin-mutant human retinas with retinitis pigmentosa.
    John SK; Smith JE; Aguirre GD; Milam AH
    Mol Vis; 2000 Nov; 6():204-15. PubMed ID: 11063754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in retinal rod outer segment fatty acids and light-damage susceptibility in P23H rats.
    Bicknell IR; Darrow R; Barsalou L; Fliesler SJ; Organisciak DT
    Mol Vis; 2002 Sep; 8():333-40. PubMed ID: 12355060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal cAMP levels during the progression of retinal degeneration in rhodopsin P23H and S334ter transgenic rats.
    Traverso V; Bush RA; Sieving PA; Deretic D
    Invest Ophthalmol Vis Sci; 2002 May; 43(5):1655-61. PubMed ID: 11980887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life history of cones in the rhodopsin-mutant P23H-3 rat: evidence of long-term survival.
    Chrysostomou V; Stone J; Valter K
    Invest Ophthalmol Vis Sci; 2009 May; 50(5):2407-16. PubMed ID: 19117918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled rod cell ablation in transgenic Xenopus laevis.
    Hamm LM; Tam BM; Moritz OL
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):885-92. PubMed ID: 18836175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect of Bcl-2 and BAG-1 on the prevention of photoreceptor cell death.
    Eversole-Cire P; Concepcion FA; Simon MI; Takayama S; Reed JC; Chen J
    Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1953-61. PubMed ID: 10845622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry.
    Li ZY; Jacobson SG; Milam AH
    Exp Eye Res; 1994 Apr; 58(4):397-408. PubMed ID: 7925677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two animal models of retinal degeneration are rescued by recombinant adeno-associated virus-mediated production of FGF-5 and FGF-18.
    Green ES; Rendahl KG; Zhou S; Ladner M; Coyne M; Srivastava R; Manning WC; Flannery JG
    Mol Ther; 2001 Apr; 3(4):507-15. PubMed ID: 11319911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa.
    Tam BM; Moritz OL
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3234-41. PubMed ID: 16877386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P23H and S334ter opsin mutations: Increasing photoreceptor outer segment n-3 fatty acid content does not affect the course of retinal degeneration.
    Martin RE; Ranchon-Cole I; Brush RS; Williamson CR; Hopkins SA; Li F; Anderson RE
    Mol Vis; 2004 Mar; 10():199-207. PubMed ID: 15064683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutant rhodopsin transgene expression on a null background.
    Frederick JM; Krasnoperova NV; Hoffmann K; Church-Kopish J; Rüther K; Howes K; Lem J; Baehr W
    Invest Ophthalmol Vis Sci; 2001 Mar; 42(3):826-33. PubMed ID: 11222546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP; White DA; Kaushal S
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin.
    Tam BM; Moritz OL
    J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light Induces Ultrastructural Changes in Rod Outer and Inner Segments, Including Autophagy, in a Transgenic Xenopus laevis P23H Rhodopsin Model of Retinitis Pigmentosa.
    Bogéa TH; Wen RH; Moritz OL
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):7947-55. PubMed ID: 26720441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy.
    Ali RR; Sarra GM; Stephens C; Alwis MD; Bainbridge JW; Munro PM; Fauser S; Reichel MB; Kinnon C; Hunt DM; Bhattacharya SS; Thrasher AJ
    Nat Genet; 2000 Jul; 25(3):306-10. PubMed ID: 10888879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.