BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10798676)

  • 1. Glucose-specific regulation of aldose reductase in human retinal pigment epithelial cells in vitro.
    Henry DN; Frank RN; Hootman SR; Rood SE; Heilig CW; Busik JV
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1554-60. PubMed ID: 10798676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of hypertonicity on aldose reductase, alpha B-crystallin, and organic osmolytes in the retinal pigment epithelium.
    Lin LR; Carper D; Yokoyama T; Reddy VN
    Invest Ophthalmol Vis Sci; 1993 Jun; 34(7):2352-9. PubMed ID: 8505217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aldose reductase in human retinal pigment epithelial cells.
    Sato S; Lin LR; Reddy VN; Kador PF
    Exp Eye Res; 1993 Aug; 57(2):235-41. PubMed ID: 8405190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of increasing glucose concentrations and protein phosphorylation on intercellular communication in cultured rat retinal pigment epithelial cells.
    Stalmans P; Himpens B
    Invest Ophthalmol Vis Sci; 1997 Jul; 38(8):1598-609. PubMed ID: 9224288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered aldose reductase gene regulation in cultured human retinal pigment epithelial cells.
    Henry DN; Del Monte M; Greene DA; Killen PD
    J Clin Invest; 1993 Aug; 92(2):617-23. PubMed ID: 8349800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose-induced activation of glucose uptake in cells from the inner and outer blood-retinal barrier.
    Busik JV; Olson LK; Grant MB; Henry DN
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2356-63. PubMed ID: 12091438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal pigment epithelium is protected against apoptosis by alphaB-crystallin.
    Alge CS; Priglinger SG; Neubauer AS; Kampik A; Zillig M; Bloemendal H; Welge-Lussen U
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3575-82. PubMed ID: 12407170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorbitol, myo-inositol, and rod outer segment phagocytosis in cultured hRPE cells exposed to glucose. In vitro model of myo-inositol depletion hypothesis of diabetic complications.
    Del Monte MA; Rabbani R; Diaz TC; Lattimer SA; Nakamura J; Brennan MC; Greene DA
    Diabetes; 1991 Oct; 40(10):1335-45. PubMed ID: 1936595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitreous modulation of gene expression in low-passage human retinal pigment epithelial cells.
    Ganti R; Hunt RC; Parapuram SK; Hunt DM
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1853-63. PubMed ID: 17389521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclooxygenase-2 gene expression and regulation in human retinal pigment epithelial cells.
    Chin MS; Nagineni CN; Hooper LC; Detrick B; Hooks JJ
    Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2338-46. PubMed ID: 11527948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Galectin-1 influences migration of retinal pigment epithelial cells.
    Alge CS; Priglinger SG; Kook D; Schmid H; Haritoglou C; Welge-Lussen U; Kampik A
    Invest Ophthalmol Vis Sci; 2006 Jan; 47(1):415-26. PubMed ID: 16384992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High glucose concentration leads to differential expression of tight junction proteins in human retinal pigment epithelial cells.
    Villarroel M; García-Ramírez M; Corraliza L; Hernández C; Simó R
    Endocrinol Nutr; 2009 Feb; 56(2):53-8. PubMed ID: 19627712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Downregulation of the pigment epithelium derived factor by hypoxia and elevated glucose concentration in cultured human retinal pigment epithelial cells].
    Yao Y; Guan M; Zhao XQ; Huang YF
    Zhonghua Yi Xue Za Zhi; 2003 Nov; 83(22):1989-92. PubMed ID: 14703436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corneal endothelial cell matrix promotes expression of differentiated features of retinal pigmented epithelial cells: implication of laminin and basic fibroblast growth factor as active components.
    Campochiaro PA; Hackett SF
    Exp Eye Res; 1993 Nov; 57(5):539-47. PubMed ID: 8282040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osmoregulatory alterations in taurine uptake by cultured human and bovine lens epithelial cells.
    Cammarata PR; Schafer G; Chen SW; Guo Z; Reeves RE
    Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):425-33. PubMed ID: 11818387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of transthyretin and retinol binding protein mRNAs and secretion of transthyretin by cultured monkey retinal pigment epithelium.
    Pfeffer BA; Becerra SP; Borst DE; Wong P
    Mol Vis; 2004 Jan; 10():23-30. PubMed ID: 14737066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiopoietin-1 upregulation by vascular endothelial growth factor in human retinal pigment epithelial cells.
    Hangai M; Murata T; Miyawaki N; Spee C; Lim JI; He S; Hinton DR; Ryan SJ
    Invest Ophthalmol Vis Sci; 2001 Jun; 42(7):1617-25. PubMed ID: 11381069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cell culture medium that supports the differentiation of human retinal pigment epithelium into functionally polarized monolayers.
    Hu J; Bok D
    Mol Vis; 2001 Feb; 7():14-9. PubMed ID: 11182021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of apoptosis in cultured human retinal pigment epithelial cells is counteracted by flupirtine.
    Osborne NN; Cazevieille C; Pergande G; Wood JP
    Invest Ophthalmol Vis Sci; 1997 Jun; 38(7):1390-400. PubMed ID: 9191602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.