These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 10798687)

  • 1. A high-precision, high-resolution and fast dosimetry system for beta sources applied in cardiovascular brachytherapy.
    Bambynek M; Flühs D; Quast U; Wegener D; Soares CG
    Med Phys; 2000 Apr; 27(4):662-7. PubMed ID: 10798687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of water-equivalent plastic scintillator for intravascular brachytherapy dosimetry.
    Geso M; Robinson N; Schumer W; Williams K
    Australas Phys Eng Sci Med; 2004 Mar; 27(1):5-10. PubMed ID: 15156701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetry characterization of 32P catheter-based vascular brachytherapy source wire.
    Mourtada FA; Soares CG; Seltzer SM; Lott SH
    Med Phys; 2000 Aug; 27(8):1770-6. PubMed ID: 10984223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EPR study of radiation stability of organic plastic scintillator for cardiovascular brachytherapy Sr90-Y90 beta dosimetry.
    Alcón EP; Lopes RT; de Almeida CE
    Appl Radiat Isot; 2005 Feb; 62(2):301-6. PubMed ID: 15607465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration and validation of a quality assurance system for 90Sr/90Y radiation source trains.
    Rosenthal P; Weber W; Förster A; Orth O; Köhler B; Seiler F
    Phys Med Biol; 2003 Mar; 48(5):573-85. PubMed ID: 12696796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry.
    Candela-Juan C; Vijande J; García-Martínez T; Niatsetski Y; Nauta G; Schuurman J; Ouhib Z; Ballester F; Perez-Calatayud J
    Med Phys; 2015 Aug; 42(8):4954-64. PubMed ID: 26233221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verification of absolute dose rates for intravascular brachytherapy beta sources.
    Piessens M; Reynaert N
    Phys Med Biol; 2000 Aug; 45(8):2219-31. PubMed ID: 10958190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.
    Ebenau M; Radeck D; Bambynek M; Sommer H; Flühs D; Spaan B; Eichmann M
    Med Phys; 2016 Aug; 43(8):4598. PubMed ID: 27487876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air core detectors for Cerenkov-free scintillation dosimetry of brachytherapy β-sources.
    Eichmann M; Thomann B
    Med Phys; 2017 Sep; 44(9):4900-4909. PubMed ID: 28548280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo dose characterization of a new 90Sr/90Y source with balloon for intravascular brachytherapy.
    Wang R; Li XA; Lobdell J
    Med Phys; 2003 Jan; 30(1):27-33. PubMed ID: 12557975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dose distributions for 90Y intravascular brachytherapy sources used with balloon catheters.
    Piessens M; Reynaert N; Potempa J; Thierens H; Wijns W; Verbeke L
    Med Phys; 2002 Jul; 29(7):1562-71. PubMed ID: 12148739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reference conditions for ion-chamber based HDR brachytherapy dosimetry and for the calibration of high-resolution solid detectors.
    Schoenfeld AA; Büsing K; Delfs B; Chofor N; Jiang P; Harder D; Poppe B; Willborn KC
    Z Med Phys; 2018 Dec; 28(4):293-302. PubMed ID: 28969957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards two-dimensional brachytherapy dosimetry using plastic scintillator: new highly efficient water equivalent plastic scintillator materials.
    Kirov AS; Hurlbut C; Dempsey JF; Shrinivas SB; Epstein JW; Binns WR; Dowkontt PF; Williamson JF
    Med Phys; 1999 Aug; 26(8):1515-23. PubMed ID: 10501051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetry of beta-ray ophthalmic applicators: comparison of different measurement methods.
    Soares CG; Vynckier S; Järvinen H; Cross WG; Sipilä P; Flühs D; Schaeken B; Mourtada FA; Bass GA; Williams TT
    Med Phys; 2001 Jul; 28(7):1373-84. PubMed ID: 11488568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical beta radiation dosimetry for brachytherapy in terms of absorbed dose to water: ISO new work item proposal for international standardization.
    Quast U; Böhm J; Kaulich TW
    Cardiovasc Radiat Med; 2002; 3(3-4):209-12. PubMed ID: 12974376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Verification of the plan dosimetry for high dose rate brachytherapy using metal-oxide-semiconductor field effect transistor detectors.
    Qi ZY; Deng XW; Huang SM; Lu J; Lerch M; Cutajar D; Rosenfeld A
    Med Phys; 2007 Jun; 34(6):2007-13. PubMed ID: 17654904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of a multipoint plastic scintillator dosimeter for high dose rate brachytherapy.
    Linares Rosales HM; Duguay-Drouin P; Archambault L; Beddar S; Beaulieu L
    Med Phys; 2019 May; 46(5):2412-2421. PubMed ID: 30891803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dosimetric characterization of a 131Cs brachytherapy source by thermoluminescence dosimetry in liquid water.
    Tailor R; Ibbott G; Lampe S; Warren WB; Tolani N
    Med Phys; 2008 Dec; 35(12):5861-8. PubMed ID: 19175142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators.
    Eichmann M; Flühs D; Spaan B
    Med Phys; 2009 Oct; 36(10):4634-43. PubMed ID: 19928095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fibre optic scintillator dosemeter for absorbed dose measurements of low-energy X-ray-emitting brachytherapy sources.
    Sliski A; Soares C; Mitch MG
    Radiat Prot Dosimetry; 2006; 120(1-4):24-7. PubMed ID: 16782747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.