BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10799680)

  • 1. DARPP-32 and CREB are present in type 2 iodothyronine deiodinase-producing tanycytes: implications for the regulation of type 2 deiodinase activity.
    Fekete C; Mihály E; Herscovici S; Salas J; Tu H; Larsen PR; Lechan RM
    Brain Res; 2000 Apr; 862(1-2):154-61. PubMed ID: 10799680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DARPP-32, a dopamine- and cyclic AMP-regulated phosphoprotein in tanycytes of the mediobasal hypothalamus: distribution and relation to dopamine and luteinizing hormone-releasing hormone neurons and other glial elements.
    Meister B; Hökfelt T; Tsuruo Y; Hemmings H; Ouimet C; Greengard P; Goldstein M
    Neuroscience; 1988 Nov; 27(2):607-22. PubMed ID: 2905789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone.
    Tu HM; Kim SW; Salvatore D; Bartha T; Legradi G; Larsen PR; Lechan RM
    Endocrinology; 1997 Aug; 138(8):3359-68. PubMed ID: 9231788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of TNF-alpha and nuclear factor-kappaB signaling to type 2 iodothyronine deiodinase activation in the mediobasal hypothalamus after lipopolysaccharide administration.
    Sánchez E; Singru PS; Wittmann G; Nouriel SS; Barrett P; Fekete C; Lechan RM
    Endocrinology; 2010 Aug; 151(8):3827-35. PubMed ID: 20501675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential distribution of the glutamate transporters GLT-1 and GLAST in tanycytes of the third ventricle.
    Berger UV; Hediger MA
    J Comp Neurol; 2001 Apr; 433(1):101-14. PubMed ID: 11283952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fasting-induced increase in type II iodothyronine deiodinase activity and messenger ribonucleic acid levels is not reversed by thyroxine in the rat hypothalamus.
    Diano S; Naftolin F; Goglia F; Horvath TL
    Endocrinology; 1998 Jun; 139(6):2879-84. PubMed ID: 9607797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NFκB signaling is essential for the lipopolysaccharide-induced increase of type 2 deiodinase in tanycytes.
    de Vries EM; Kwakkel J; Eggels L; Kalsbeek A; Barrett P; Fliers E; Boelen A
    Endocrinology; 2014 May; 155(5):2000-8. PubMed ID: 24635351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations of CREB and DARPP-32 phosphorylation following cocaine and monoaminergic uptake inhibitors.
    Di Benedetto M; D'Addario C; Candeletti S; Romualdi P
    Brain Res; 2007 Jan; 1128(1):33-9. PubMed ID: 17125745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution and cellular localization of DARPP-32 mRNA in rat brain.
    Schalling M; Djurfeldt M; Hökfelt T; Ehrlich M; Kurihara T; Greengard P
    Brain Res Mol Brain Res; 1990 Feb; 7(2):139-49. PubMed ID: 2160041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraventricular beta-endorphin accumulates in DARPP-32 immunoreactive tanycytes.
    Bjelke B; Fuxe K
    Neuroreport; 1993 Dec; 5(3):265-8. PubMed ID: 8298087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental regulation of phosphoprotein gene expression in the caudate-putamen of rat: an in situ hybridization study.
    Gustafson EL; Ehrlich ME; Trivedi P; Greengard P
    Neuroscience; 1992 Nov; 51(1):65-75. PubMed ID: 1465187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. D1 receptor mechanisms in the median eminence and their inhibitory regulation of LHRH release.
    Fuxe K; Agnati LF; Andersson K; Cintra A; Härfstrand A; Zoli M; Eneroth P; Goldstein M
    Neurochem Int; 1988; 13(2):165-78. PubMed ID: 20501286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunocytochemical localization of DARPP-32, a dopamine and cyclic-AMP-regulated phosphoprotein, in the primate brain.
    Ouimet CC; LaMantia AS; Goldman-Rakic P; Rakic P; Greengard P
    J Comp Neurol; 1992 Sep; 323(2):209-18. PubMed ID: 1328330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipopolysaccharide induces type 2 iodothyronine deiodinase in the mediobasal hypothalamus: implications for the nonthyroidal illness syndrome.
    Fekete C; Gereben B; Doleschall M; Harney JW; Dora JM; Bianco AC; Sarkar S; Liposits Z; Rand W; Emerson C; Kacskovics I; Larsen PR; Lechan RM
    Endocrinology; 2004 Apr; 145(4):1649-55. PubMed ID: 14684601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DARPP-32 as a marker for D-1 dopaminoceptive cells in the rat brain: prenatal development and presence in glial elements (tanycytes) in the basal hypothalamus.
    Hökfelt T; Foster G; Schultzberg M; Meister B; Schalling M; Goldstein M; Hemmings HC; Ouimet C; Greengard P
    Adv Exp Med Biol; 1988; 235():65-82. PubMed ID: 2976255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. t-Darpp promotes cancer cell survival by up-regulation of Bcl2 through Akt-dependent mechanism.
    Belkhiri A; Dar AA; Zaika A; Kelley M; El-Rifai W
    Cancer Res; 2008 Jan; 68(2):395-403. PubMed ID: 18199533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related alterations in tanycytes of the mediobasal hypothalamus of the male rat.
    Zoli M; Ferraguti F; Frasoldati A; Biagini G; Agnati LF
    Neurobiol Aging; 1995; 16(1):77-83. PubMed ID: 7723939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated expression of glucose transporter-1 in hypothalamic ependymal cells not involved in the formation of the brain-cerebrospinal fluid barrier.
    Garcia MA; Carrasco M; Godoy A; Reinicke K; Montecinos VP; Aguayo LG; Tapia JC; Vera JC; Nualart F
    J Cell Biochem; 2001; 80(4):491-503. PubMed ID: 11169733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain.
    Guadaño-Ferraz A; Obregón MJ; St Germain DL; Bernal J
    Proc Natl Acad Sci U S A; 1997 Sep; 94(19):10391-6. PubMed ID: 9294221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine D3 receptor deletion increases tissue plasminogen activator (tPA) activity in prefrontal cortex and hippocampus.
    Castorina A; D'Amico AG; Scuderi S; Leggio GM; Drago F; D'Agata V
    Neuroscience; 2013 Oct; 250():546-56. PubMed ID: 23906635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.