BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10799817)

  • 1. Formation of peptide impurities in polyester matrices during implant manufacturing.
    Rothen-Weinhold A; Oudry N; Schwach-Abdellaoui K; Frutiger-Hughes S; Hughes GJ; Jeannerat D; Burger U; Besseghir K; Gurny R
    Eur J Pharm Biopharm; 2000 May; 49(3):253-7. PubMed ID: 10799817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability studies of a somatostatin analogue in biodegradable implants.
    Rothen-Weinhold A; Besseghir K; Vuaridel E; Sublet E; Oudry N; Gurny R
    Int J Pharm; 1999 Feb; 178(2):213-21. PubMed ID: 10205641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation in vivo of a long-term delivery system for vapreotide, a somatostatin analogue.
    Rothen-Weinhold A; Besseghir K; De Zelicourt Y; Gurny R
    J Control Release; 1998 Mar; 52(1-2):205-13. PubMed ID: 9685950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injection-molding versus extrusion as manufacturing technique for the preparation of biodegradable implants.
    Rothen-Weinhold A; Besseghir K; Vuaridel E; Sublet E; Oudry N; Kubel F; Gurny R
    Eur J Pharm Biopharm; 1999 Sep; 48(2):113-21. PubMed ID: 10469929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of single or blended polymer types for controlled in vitro release and plasma levels of a somatostatin analogue entrapped in PLA/PLGA microspheres.
    Blanco-Príeto MJ; Campanero MA; Besseghir K; Heimgatner F; Gander B
    J Control Release; 2004 May; 96(3):437-48. PubMed ID: 15120900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impurity formation studies with peptide-loaded polymeric microspheres Part I. In vivo evaluation.
    Murty SB; Thanoo BC; Wei Q; DeLuca PP
    Int J Pharm; 2005 Jun; 297(1-2):50-61. PubMed ID: 15893894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impurity formation studies with peptide-loaded polymeric microspheres Part II. In vitro evaluation.
    Murty SB; Na DH; Thanoo BC; DeLuca PP
    Int J Pharm; 2005 Jun; 297(1-2):62-72. PubMed ID: 15885939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of chemically modified peptide from poly(D,L-lactide-co-glycolide) microspheres under in vitro release conditions.
    Murty SB; Goodman J; Thanoo BC; DeLuca PP
    AAPS PharmSciTech; 2003 Oct; 4(4):E50. PubMed ID: 15198545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic atomization and subsequent polymer desolvation for peptide and protein microencapsulation into biodegradable polyesters.
    Felder ChB; Blanco-Príeto MJ; Heizmann J; Merkle HP; Gander B
    J Microencapsul; 2003; 20(5):553-67. PubMed ID: 12909541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic biodegradable polyesters for implantable controlled-release devices.
    Pothupitiya JU; Zheng C; Saltzman WM
    Expert Opin Drug Deliv; 2022 Oct; 19(10):1351-1364. PubMed ID: 36197839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo evaluation of a somatostatin analogue released from PLGA microspheres.
    Blanco-Príeto MJ; Besseghir K; Zerbe O; Andris D; Orsolini P; Heimgartner F; Merkle HP; Gander B
    J Control Release; 2000 Jun; 67(1):19-28. PubMed ID: 10773325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PLA/F68/dexamethasone implants prepared by hot-melt extrusion for controlled release of anti-inflammatory drug to implantable medical devices: I. Preparation, characterization and hydrolytic degradation study.
    Li D; Guo G; Fan R; Liang J; Deng X; Luo F; Qian Z
    Int J Pharm; 2013 Jan; 441(1-2):365-72. PubMed ID: 23178216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications.
    Tsuji H
    Macromol Biosci; 2005 Jul; 5(7):569-97. PubMed ID: 15997437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel design of one-side coated biodegradable intrascleral implant for the sustained release of triamcinolone acetonide.
    Kim YM; Lim JO; Kim HK; Kim SY; Shin JP
    Eur J Pharm Biopharm; 2008 Sep; 70(1):179-86. PubMed ID: 18667297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of the test medium for the release kinetics of a somatostatin analogue from poly(D,L-lactide-co-glycolide) microspheres.
    Blanco-Príeto MJ; Besseghir K; Orsolini P; Heimgartner F; Deuschel C; Merkle HP; Nam-Trân H; Gander B
    Int J Pharm; 1999 Jul; 184(2):243-50. PubMed ID: 10387954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot-Melt Preparation of a Non-Biodegradable Peptide Implant: A Proof of Principle.
    D'Hondt M; Verbeke F; Wuytens P; Skirtach A; De Spiegeleer B; Wynendaele E
    Protein Pept Lett; 2019; 26(9):691-701. PubMed ID: 31215364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide acylation by poly(alpha-hydroxy esters).
    Lucke A; Kiermaier J; Göpferich A
    Pharm Res; 2002 Feb; 19(2):175-81. PubMed ID: 11883645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo characteristics of injectable poly(DL-lactic acid) microspheres for long-acting drug delivery.
    Kobayashi D; Tsubuku S; Yamanaka H; Asano M; Miyajima M; Yoshida M
    Drug Dev Ind Pharm; 1998 Sep; 24(9):819-25. PubMed ID: 9876532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable polymers for ocular drug delivery.
    Kimura H; Ogura Y
    Ophthalmologica; 2001; 215(3):143-55. PubMed ID: 11340382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.