BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10800030)

  • 41. In vivo brain phosphocreatine and ATP regulation in mice fed a creatine analog.
    Holtzman D; Meyers R; O'Gorman E; Khait I; Wallimann T; Allred E; Jensen F
    Am J Physiol; 1997 May; 272(5 Pt 1):C1567-77. PubMed ID: 9176148
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphocreatine content of freeze-clamped muscle: influence of creatine kinase inhibition.
    Brault JJ; Abraham KA; Terjung RL
    J Appl Physiol (1985); 2003 May; 94(5):1751-6. PubMed ID: 12514168
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Brain creatine phosphate and creatine kinase in mice fed an analogue of creatine.
    Holtzman D; McFarland E; Moerland T; Koutcher J; Kushmerick MJ; Neuringer LJ
    Brain Res; 1989 Mar; 483(1):68-77. PubMed ID: 2706511
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ion transport in gills of the euryhaline fish Gillichthys mirabilis is facilitated by a phosphocreatine circuit.
    Kültz D; Somero GN
    Am J Physiol; 1995 Apr; 268(4 Pt 2):R1003-12. PubMed ID: 7733382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise.
    Ydfors M; Hughes MC; Laham R; Schlattner U; Norrbom J; Perry CG
    J Physiol; 2016 Jun; 594(11):3127-40. PubMed ID: 26631938
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure and function of resistance arteries from BB-creatine kinase and ubiquitous Mt-creatine kinase double knockout mice.
    Taherzadeh Z; van Montfrans GA; Van der Zee CEEM; Streijger F; Bakker ENTP; Brewster LM
    Amino Acids; 2020 Jul; 52(6-7):1033-1041. PubMed ID: 32696177
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Creatine kinase activity in rat skeletal muscle with intermittent tetanic stimulation.
    Le Rumeur E; Le Moyec L; de Certaines JD
    Magn Reson Med; 1992 Apr; 24(2):335-42. PubMed ID: 1569871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Creatine kinase-catalyzed reaction rate in the cyanide-poisoned mouse brain.
    Holtzman D; Offutt M; Tsuji M; Neuringer LJ; Jacobs D
    J Cereb Blood Flow Metab; 1993 Jan; 13(1):153-61. PubMed ID: 8417004
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activation of sea-urchin sperm motility is accompanied by an increase in the creatine kinase exchange flux.
    Dorsten FA; Wyss M; Wallimann T; Nicolay K
    Biochem J; 1997 Jul; 325 ( Pt 2)(Pt 2):411-6. PubMed ID: 9230121
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer.
    Zahler R; Bittl JA; Ingwall JS
    Biophys J; 1987 Jun; 51(6):883-93. PubMed ID: 3607210
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mitochondrial respiration in creatine-loaded muscle: is there 31P-MRS evidence of direct effects of phosphocreatine and creatine in vivo?
    Kemp G
    J Appl Physiol (1985); 2006 Apr; 100(4):1428-9; author reply 1429-30. PubMed ID: 16540719
    [No Abstract]   [Full Text] [Related]  

  • 52. Phosphocreatine protects transgenic mouse liver expressing creatine kinase from hypoxia and ischemia.
    Miller K; Halow J; Koretsky AP
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1544-51. PubMed ID: 8279516
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase.
    Saupe KW; Spindler M; Tian R; Ingwall JS
    Circ Res; 1998 May; 82(8):898-907. PubMed ID: 9576109
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo detection of gene expression in liver by 31P nuclear magnetic resonance spectroscopy employing creatine kinase as a marker gene.
    Auricchio A; Zhou R; Wilson JM; Glickson JD
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5205-10. PubMed ID: 11296261
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart.
    Stepanov V; Mateo P; Gillet B; Beloeil JC; Lechene P; Hoerter JA
    Am J Physiol; 1997 Oct; 273(4):C1397-408. PubMed ID: 9357786
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Creatine kinase injection restores contractile function in creatine-kinase-deficient mouse skeletal muscle fibres.
    Dahlstedt AJ; Katz A; Tavi P; Westerblad H
    J Physiol; 2003 Mar; 547(Pt 2):395-403. PubMed ID: 12562893
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dipolar coupling and ordering effects observed in magnetic resonance spectra of skeletal muscle.
    Boesch C; Kreis R
    NMR Biomed; 2001 Apr; 14(2):140-8. PubMed ID: 11320539
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contractile and metabolic effects of increased creatine kinase activity in mouse skeletal muscle.
    Roman BB; Foley JM; Meyer RA; Koretsky AP
    Am J Physiol; 1996 Apr; 270(4 Pt 1):C1236-45. PubMed ID: 8928751
    [TBL] [Abstract][Full Text] [Related]  

  • 59. NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels.
    Koretsky AP; Brosnan MJ; Chen LH; Chen JD; Van Dyke T
    Proc Natl Acad Sci U S A; 1990 Apr; 87(8):3112-6. PubMed ID: 2326269
    [TBL] [Abstract][Full Text] [Related]  

  • 60. From energy store to energy flux: a study in creatine kinase-deficient fast skeletal muscle.
    Kaasik A; Veksler V; Boehm E; Novotova M; Ventura-Clapier R
    FASEB J; 2003 Apr; 17(6):708-10. PubMed ID: 12586739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.