BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10800672)

  • 1. Molecular structure of membrane-targeting calcium sensors in vision: recoverin and guanylate cyclase-activating protein 2.
    Ames JB; Ikura M; Stryer L
    Methods Enzymol; 2000; 316():121-32. PubMed ID: 10800672
    [No Abstract]   [Full Text] [Related]  

  • 2. Structure and membrane-targeting mechanism of retinal Ca2+-binding proteins, recoverin and GCAP-2.
    Ames JB; Ikura M
    Adv Exp Med Biol; 2002; 514():333-48. PubMed ID: 12596931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases.
    Ames JB; Dizhoor AM; Ikura M; Palczewski K; Stryer L
    J Biol Chem; 1999 Jul; 274(27):19329-37. PubMed ID: 10383444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+-dependent conformational changes in bovine GCAP-2.
    Hughes RE; Brzovic PS; Dizhoor AM; Klevit RE; Hurley JB
    Protein Sci; 1998 Dec; 7(12):2675-80. PubMed ID: 9865963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Role of calcium ions in photoreceptor light-adaptation].
    Kawamura S
    Tanpakushitsu Kakusan Koso; 1998 Sep; 43(12 Suppl):1806-13. PubMed ID: 9788186
    [No Abstract]   [Full Text] [Related]  

  • 6. Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase.
    Dizhoor AM; Ray S; Kumar S; Niemi G; Spencer M; Brolley D; Walsh KA; Philipov PP; Hurley JB; Stryer L
    Science; 1991 Feb; 251(4996):915-8. PubMed ID: 1672047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ differently affects hydrophobic properties of guanylyl cyclase-activating proteins (GCAPs) and recoverin.
    Gorczyca WA; Kobiałka M; Kuropatwa M; Kurowska E
    Acta Biochim Pol; 2003; 50(2):367-76. PubMed ID: 12833163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state.
    Tanaka T; Ames JB; Harvey TS; Stryer L; Ikura M
    Nature; 1995 Aug; 376(6539):444-7. PubMed ID: 7630423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Neuron-specific Ca(2+)-binding proteins].
    Kobayashi M; Takamatsu K
    Tanpakushitsu Kakusan Koso; 1998 Sep; 43(12 Suppl):1681-7. PubMed ID: 9788169
    [No Abstract]   [Full Text] [Related]  

  • 10. Portrait of a myristoyl switch protein.
    Ames JB; Tanaka T; Stryer L; Ikura M
    Curr Opin Struct Biol; 1996 Aug; 6(4):432-8. PubMed ID: 8794166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional structure of recoverin, a calcium sensor in vision.
    Flaherty KM; Zozulya S; Stryer L; McKay DB
    Cell; 1993 Nov; 75(4):709-16. PubMed ID: 8242744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, expression, and crystallization of recoverin, a calcium sensor in vision.
    Ray S; Zozulya S; Niemi GA; Flaherty KM; Brolley D; Dizhoor AM; McKay DB; Hurley J; Stryer L
    Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5705-9. PubMed ID: 1385864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of recoverin, the calcium-sensitive activator of photoreceptor guanylyl cyclase.
    Lambrecht HG; Koch KW
    FEBS Lett; 1991 Dec; 294(3):207-9. PubMed ID: 1684552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fission yeast homolog of neuronal calcium sensor-1 (Ncs1p) regulates sporulation and confers calcium tolerance.
    Hamasaki-Katagiri N; Molchanova T; Takeda K; Ames JB
    J Biol Chem; 2004 Mar; 279(13):12744-54. PubMed ID: 14722091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ChIPping away at potassium channel regulation.
    Li M; Adelman JP
    Nat Neurosci; 2000 Mar; 3(3):202-4. PubMed ID: 10700246
    [No Abstract]   [Full Text] [Related]  

  • 16. Calcium binding to recoverin: implications for secondary structure and membrane association.
    Johnson WC; Palczewski K; Gorczyca WA; Riazance-Lawrence JH; Witkowska D; Polans AS
    Biochim Biophys Acta; 1997 Oct; 1342(2):164-74. PubMed ID: 9392525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino-terminal myristoylation induces cooperative calcium binding to recoverin.
    Ames JB; Porumb T; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Mar; 270(9):4526-33. PubMed ID: 7876221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-binding proteins and nitric oxide in retinal function and disease.
    Müller F; Koch KW
    Acta Anat (Basel); 1998; 162(2-3):142-50. PubMed ID: 9831761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous N-terminal acylation of retinal proteins.
    DeMar JC; Rundle DR; Wensel TG; Anderson RE
    Prog Lipid Res; 1999 Jan; 38(1):49-90. PubMed ID: 10396602
    [No Abstract]   [Full Text] [Related]  

  • 20. Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: implications for the calcium-myristoyl switch.
    Ames JB; Tanaka T; Stryer L; Ikura M
    Biochemistry; 1994 Sep; 33(35):10743-53. PubMed ID: 8075075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.