BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

684 related articles for article (PubMed ID: 10801124)

  • 21. Rational design, synthesis, purification, and activation of metal-organic framework materials.
    Farha OK; Hupp JT
    Acc Chem Res; 2010 Aug; 43(8):1166-75. PubMed ID: 20608672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gas-induced transformation and expansion of a non-porous organic solid.
    Thallapally PK; McGrail BP; Dalgarno SJ; Schaef HT; Tian J; Atwood JL
    Nat Mater; 2008 Feb; 7(2):146-50. PubMed ID: 18193053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designing metal-organic frameworks for catalytic applications.
    Ma L; Lin W
    Top Curr Chem; 2010; 293():175-205. PubMed ID: 21618746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks.
    Perry JJ; Perman JA; Zaworotko MJ
    Chem Soc Rev; 2009 May; 38(5):1400-17. PubMed ID: 19384444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials.
    Thomas KM
    Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rational approaches toward the design and synthesis of zeolitic inorganic open-framework materials.
    Yu J; Xu R
    Acc Chem Res; 2010 Sep; 43(9):1195-204. PubMed ID: 20575533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties.
    Dybtsev DN; Chun H; Yoon SH; Kim D; Kim K
    J Am Chem Soc; 2004 Jan; 126(1):32-3. PubMed ID: 14709045
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active-site-accessible, porphyrinic metal-organic framework materials.
    Farha OK; Shultz AM; Sarjeant AA; Nguyen ST; Hupp JT
    J Am Chem Soc; 2011 Apr; 133(15):5652-5. PubMed ID: 21446651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal complexes of cinchonine as chiral building blocks: a strategy for the construction of nanotubular architectures and helical coordination polymers.
    Kaczorowski T; Justyniak I; Lipińska T; Lipkowski J; Lewiński J
    J Am Chem Soc; 2009 Apr; 131(15):5393-5. PubMed ID: 19317472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design.
    Pérez-Ramírez J; Christensen CH; Egeblad K; Christensen CH; Groen JC
    Chem Soc Rev; 2008 Nov; 37(11):2530-42. PubMed ID: 18949124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites.
    Corma A; Rey F; Rius J; Sabater MJ; Valencia S
    Nature; 2004 Sep; 431(7006):287-90. PubMed ID: 15372027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity.
    Zheng N; Bu X; Feng P
    Nature; 2003 Nov; 426(6965):428-32. PubMed ID: 14647378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material.
    Chen B; Zhao X; Putkham A; Hong K; Lobkovsky EB; Hurtado EJ; Fletcher AJ; Thomas KM
    J Am Chem Soc; 2008 May; 130(20):6411-23. PubMed ID: 18435535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new method to determine pore size and its volume distribution of porous solids having known atomistic configuration.
    Do DD; Herrera LF; Do HD
    J Colloid Interface Sci; 2008 Dec; 328(1):110-9. PubMed ID: 18834598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isoreticular homochiral porous metal-organic structures with tunable pore sizes.
    Dybtsev DN; Yutkin MP; Peresypkina EV; Virovets AV; Serre C; Férey G; Fedin VP
    Inorg Chem; 2007 Aug; 46(17):6843-5. PubMed ID: 17645331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Applications of homochiral metal-organic frameworks in enantioselective adsorption and chromatography separation.
    Li X; Chang C; Wang X; Bai Y; Liu H
    Electrophoresis; 2014 Oct; 35(19):2733-43. PubMed ID: 24658972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation.
    Liu Y; Xuan W; Cui Y
    Adv Mater; 2010 Oct; 22(37):4112-35. PubMed ID: 20799372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A microdiffraction set-up for nanoporous metal-organic-framework-type solids.
    Volkringer C; Popov D; Loiseau T; Guillou N; Ferey G; Haouas M; Taulelle F; Mellot-Draznieks C; Burghammer M; Riekel C
    Nat Mater; 2007 Oct; 6(10):760-4. PubMed ID: 17873864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective gas adsorption and separation in metal-organic frameworks.
    Li JR; Kuppler RJ; Zhou HC
    Chem Soc Rev; 2009 May; 38(5):1477-504. PubMed ID: 19384449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.