BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10801286)

  • 21. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle.
    Manning Fox JE; Meredith D; Halestrap AP
    J Physiol; 2000 Dec; 529 Pt 2(Pt 2):285-93. PubMed ID: 11101640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum.
    Elliott JL; Saliba KJ; Kirk K
    Biochem J; 2001 May; 355(Pt 3):733-9. PubMed ID: 11311136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconstitution of the lactate carrier from rat skeletal-muscle sarcolemma.
    Wibrand F; Juel C
    Biochem J; 1994 Apr; 299 ( Pt 2)(Pt 2):533-7. PubMed ID: 8172615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hypertonic activation of AE2 anion exchanger in Xenopus oocytes via NHE-mediated intracellular alkalinization.
    Humphreys BD; Jiang L; Chernova MN; Alper SL
    Am J Physiol; 1995 Jan; 268(1 Pt 1):C201-9. PubMed ID: 7840148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of a 'proton antenna' facilitates transport activity of the monocarboxylate transporter MCT4.
    Noor SI; Pouyssegur J; Deitmer JW; Becker HM
    FEBS J; 2017 Jan; 284(1):149-162. PubMed ID: 27860283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of monocarboxylate transporter by N-cyanosulphonamide S0859.
    Heidtmann H; Ruminot I; Becker HM; Deitmer JW
    Eur J Pharmacol; 2015 Sep; 762():344-9. PubMed ID: 26027796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression cloning and characterization of a renal electrogenic Na+/HCO3- cotransporter.
    Romero MF; Hediger MA; Boulpaep EL; Boron WF
    Nature; 1997 May; 387(6631):409-13. PubMed ID: 9163427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An endogenous carrier-mediated uptake system for folate in oocytes of Xenopus laevis.
    Lo RS; Said HM; Unger TF; Hollander D; Miledi R
    Proc Biol Sci; 1991 Nov; 246(1316):161-5. PubMed ID: 1685241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of lactate and pyruvate transport in cultured rat myotubes.
    von Grumbckow L; Elsner P; Hellsten Y; Quistorff B; Juel C
    Biochim Biophys Acta; 1999 Mar; 1417(2):267-75. PubMed ID: 10082802
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facilitated lactate transport by MCT1 when coexpressed with the sodium bicarbonate cotransporter (NBC) in Xenopus oocytes.
    Becker HM; Bröer S; Deitmer JW
    Biophys J; 2004 Jan; 86(1 Pt 1):235-47. PubMed ID: 14695265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stoichiometry of the rat kidney Na+-HCO3- cotransporter expressed in Xenopus laevis oocytes.
    Heyer M; Müller-Berger S; Romero MF; Boron WF; Frömter E
    Pflugers Arch; 1999 Aug; 438(3):322-9. PubMed ID: 10398862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Several phosphate transport processes are present in vascular smooth muscle cells.
    Hortells L; Guillén N; Sosa C; Sorribas V
    Am J Physiol Heart Circ Physiol; 2020 Feb; 318(2):H448-H460. PubMed ID: 31886722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence that the transport-related proteins BAT and 4F2hc are not specific for amino acids: induction of Na+-dependent uridine and pyruvate transport activity by recombinant BAT and 4F2hc expressed in Xenopus oocytes.
    Yao SY; Muzyka WR; Cass CE; Cheeseman CI; Young JD
    Biochem Cell Biol; 1998; 76(5):859-65. PubMed ID: 10353721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bicarbonate-dependent and bicarbonate-independent mechanisms contribute to nondiffusive uptake of acetate in the ruminal epithelium of sheep.
    Aschenbach JR; Bilk S; Tadesse G; Stumpff F; Gäbel G
    Am J Physiol Gastrointest Liver Physiol; 2009 May; 296(5):G1098-107. PubMed ID: 19264953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes.
    Edlund GL; Halestrap AP
    Biochem J; 1988 Jan; 249(1):117-26. PubMed ID: 3342001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of intestinal folate carrier clone expressed in IEC-6 cells and in Xenopus oocytes.
    Kumar CK; Nguyen TT; Gonzales FB; Said HM
    Am J Physiol; 1998 Jan; 274(1):C289-94. PubMed ID: 9458739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular mechanisms of organic cation transport in OCT2-expressing Xenopus oocytes.
    Okuda M; Urakami Y; Saito H; Inui K
    Biochim Biophys Acta; 1999 Mar; 1417(2):224-31. PubMed ID: 10082798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Permeability and the mechanism of transport of boric acid across the plasma membrane of Xenopus laevis oocytes.
    Dordas C; Brown PH
    Biol Trace Elem Res; 2001 Aug; 81(2):127-39. PubMed ID: 11554394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional characterization and regulation by pH of murine AE2 anion exchanger expressed in Xenopus oocytes.
    Humphreys BD; Jiang L; Chernova MN; Alper SL
    Am J Physiol; 1994 Nov; 267(5 Pt 1):C1295-307. PubMed ID: 7977693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of rat renal Na+HCO3-cotransporter in Xenopus laevis oocytes.
    Burckhardt BC; Thelen P; Burckhardt G
    Pflugers Arch; 1994 Dec; 429(2):294-6. PubMed ID: 7892118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.