BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 10801325)

  • 1. Mechanism of oxime reactivation of acetylcholinesterase analyzed by chirality and mutagenesis.
    Wong L; Radic Z; Brüggemann RJ; Hosea N; Berman HA; Taylor P
    Biochemistry; 2000 May; 39(19):5750-7. PubMed ID: 10801325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutant cholinesterases possessing enhanced capacity for reactivation of their phosphonylated conjugates.
    Kovarik Z; Radić Z; Berman HA; Simeon-Rudolf V; Reiner E; Taylor P
    Biochemistry; 2004 Mar; 43(11):3222-9. PubMed ID: 15023072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid residues controlling reactivation of organophosphonyl conjugates of acetylcholinesterase by mono- and bisquaternary oximes.
    Ashani Y; Radić Z; Tsigelny I; Vellom DC; Pickering NA; Quinn DM; Doctor BP; Taylor P
    J Biol Chem; 1995 Mar; 270(11):6370-80. PubMed ID: 7890775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoryl oxime inhibition of acetylcholinesterase during oxime reactivation is prevented by edrophonium.
    Luo C; Saxena A; Smith M; Garcia G; Radić Z; Taylor P; Doctor BP
    Biochemistry; 1999 Aug; 38(31):9937-47. PubMed ID: 10433700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation of acetylcholinesterase to enhance oxime-assisted catalytic turnover of methylphosphonates.
    Kovarik Z; Radić Z; Berman HA; Taylor P
    Toxicology; 2007 Apr; 233(1-3):79-84. PubMed ID: 17046138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of oxime reactivators with diethylphosphoryl adducts of human acetylcholinesterase and its mutant derivatives.
    Grosfeld H; Barak D; Ordentlich A; Velan B; Shafferman A
    Mol Pharmacol; 1996 Sep; 50(3):639-49. PubMed ID: 8794905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design, synthesis, and evaluation of uncharged, "smart" bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase.
    Gorecki L; Gerlits O; Kong X; Cheng X; Blumenthal DK; Taylor P; Ballatore C; Kovalevsky A; Radić Z
    J Biol Chem; 2020 Mar; 295(13):4079-4092. PubMed ID: 32019865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro reactivation of acetylcholinesterase using the oxime K027.
    Kuca K; Kassa J
    Vet Hum Toxicol; 2004 Feb; 46(1):15-8. PubMed ID: 14748409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A common mechanism for resistance to oxime reactivation of acetylcholinesterase inhibited by organophosphorus compounds.
    Maxwell DM; Brecht KM; Sweeney RE
    Chem Biol Interact; 2013 Mar; 203(1):72-6. PubMed ID: 22982773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases.
    Hosea NA; Berman HA; Taylor P
    Biochemistry; 1995 Sep; 34(36):11528-36. PubMed ID: 7547883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Centrally acting oximes in reactivation of tabun-phosphoramidated AChE.
    Kovarik Z; Maček N; Sit RK; Radić Z; Fokin VV; Barry Sharpless K; Taylor P
    Chem Biol Interact; 2013 Mar; 203(1):77-80. PubMed ID: 22960624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acceleration of oxime-induced reactivation of organophosphate-inhibited fetal bovine serum acetylcholinesterase by monoquaternary and bisquaternary ligands.
    Luo C; Ashani Y; Doctor BP
    Mol Pharmacol; 1998 Apr; 53(4):718-26. PubMed ID: 9547363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of edrophonium in prevention of the re-inhibition of acetylcholinesterase by phosphorylated oxime.
    Luo C; Saxena A; Ashani Y; Leader H; Radić Z; Taylor P; Doctor BP
    Chem Biol Interact; 1999 May; 119-120():129-35. PubMed ID: 10421446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivation of cyclosarin-inhibited rat brain acetylcholinesterase by pyridinium--oximes.
    Kuca K; Patocka J
    J Enzyme Inhib Med Chem; 2004 Feb; 19(1):39-43. PubMed ID: 15202491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of cholinesterase inactivation and reactivation by systematic structural modification and enantiomeric selectivity.
    Taylor P; Wong L; Radić Z; Tsigelny I; Brüggemann R; Hosea NA; Berman HA
    Chem Biol Interact; 1999 May; 119-120():3-15. PubMed ID: 10421434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A structure-activity analysis of the variation in oxime efficacy against nerve agents.
    Maxwell DM; Koplovitz I; Worek F; Sweeney RE
    Toxicol Appl Pharmacol; 2008 Sep; 231(2):157-64. PubMed ID: 18508103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorinated pyridinium oximes as potential reactivators for acetylcholinesterases inhibited by paraoxon organophosphorus agent.
    Jeong HC; Park NJ; Chae CH; Musilek K; Kassa J; Kuca K; Jung YS
    Bioorg Med Chem; 2009 Sep; 17(17):6213-7. PubMed ID: 19665386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivation of tabun-hAChE investigated by structurally analogous oximes and mutagenesis.
    Artursson E; Akfur C; Hörnberg A; Worek F; Ekström F
    Toxicology; 2009 Nov; 265(3):108-14. PubMed ID: 19761810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site mutant acetylcholinesterase interactions with 2-PAM, HI-6, and DDVP.
    Kovarik Z; Ciban N; Radić Z; Simeon-Rudolf V; Taylor P
    Biochem Biophys Res Commun; 2006 Apr; 342(3):973-8. PubMed ID: 16598855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxime-assisted acetylcholinesterase catalytic scavengers of organophosphates that resist aging.
    Cochran R; Kalisiak J; Küçükkilinç T; Radic Z; Garcia E; Zhang L; Ho KY; Amitai G; Kovarik Z; Fokin VV; Sharpless KB; Taylor P
    J Biol Chem; 2011 Aug; 286(34):29718-24. PubMed ID: 21730071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.