These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 1080184)

  • 21. Effects of lanthanum on potassium contractures of isolated twitch muscle fibres of the frog.
    Andersson KE; Edman KA
    Acta Physiol Scand; 1974 Jan; 90(1):124-31. PubMed ID: 4544400
    [No Abstract]   [Full Text] [Related]  

  • 22. [A comparative analysis of contractile responses induced by acetylcholine and choline in twich and tonic frog skeletal muscle fibres].
    Katina IE; Nasledov GA
    Biofizika; 2008; 53(6):1078-86. PubMed ID: 19137696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in potassium contractures due to simulated weightlessness in rat soleus muscle.
    Khammari A; Noireaud J
    J Appl Physiol (1985); 1994 Nov; 77(5):2420-5. PubMed ID: 7868464
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Action potential in the transverse tubules and its role in the activation of skeletal muscle.
    Bastian J; Nakajima S
    J Gen Physiol; 1974 Feb; 63(2):257-78. PubMed ID: 4812638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulation rate, potentiators, and sarcomere length-tension relationship of muscle.
    Rome LC; Morgan DL; Julian FJ
    Am J Physiol; 1985 Nov; 249(5 Pt 1):C497-502. PubMed ID: 3877467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of strophanthidin on intracellular Na ion activity and twitch tension of constantly driven canine cardiac Purkinje fibers.
    Lee CO; Dagostino M
    Biophys J; 1982 Dec; 40(3):185-98. PubMed ID: 7183333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Transmembrane effects in the sodium pump system. I. The effect of external potassium and rubidium on the dependence of sodium efflux on sodium concentration in the frog muscle].
    Marakhova II
    Tsitologiia; 1984 Oct; 26(10):1136-44. PubMed ID: 6096993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of the Na-K pump by intracellular Na in rat slow- and fast-twitch muscle.
    Everts ME; Clausen T
    Acta Physiol Scand; 1992 Aug; 145(4):353-62. PubMed ID: 1326854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Na current density at and away from end plates on rat fast- and slow-twitch skeletal muscle fibers.
    Ruff RL
    Am J Physiol; 1992 Jan; 262(1 Pt 1):C229-34. PubMed ID: 1733232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An analysis of the leakages of sodium ions into and potassium ions out of striated muscle cells.
    Sjodin RA; Beaugé LA
    J Gen Physiol; 1973 Feb; 61(2):222-50. PubMed ID: 4540059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of calcium inactivation of sarcoplasmic reticulum calcium release by fura-2 in voltage-clamped cut twitch fibers from frog muscle.
    Jong DS; Pape PC; Chandler WK; Baylor SM
    J Gen Physiol; 1993 Aug; 102(2):333-70. PubMed ID: 8228914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resting membrane potential and ionic distribution in fast- and slow-twitch mammalian muscle.
    Campion DS
    J Clin Invest; 1974 Sep; 54(3):514-8. PubMed ID: 4854140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrophysiological studies of the antrum muscle fibers of the guinea pig stomach.
    Kuriyama H; Osa T; Tasaki H
    J Gen Physiol; 1970 Jan; 55(1):48-62. PubMed ID: 5410489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of stretch on potassium contracture tension in twitch and slow muscle fibres of Xenopus laevis.
    Lännergren J
    Acta Physiol Scand; 1975 Nov; 95(3):347-9. PubMed ID: 1189943
    [No Abstract]   [Full Text] [Related]  

  • 35. Double sucrose-gap method applied to single muscle fiber of Xenopus laevis.
    Nakajima S; Bastian J
    J Gen Physiol; 1974 Feb; 63(2):235-56. PubMed ID: 4812637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time courses of late after-potentials following tetanus or single shock in skeletal muscle fibers.
    Ono T; Nakajima S
    Pflugers Arch; 1982 Sep; 394(3):274-6. PubMed ID: 6983054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental generation and computational modeling of intracellular pH gradients in cardiac myocytes.
    Swietach P; Leem CH; Spitzer KW; Vaughan-Jones RD
    Biophys J; 2005 Apr; 88(4):3018-37. PubMed ID: 15653720
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A gap isolation method to investigate electrical and mechanical properties of fully contracting skeletal muscle fibers.
    Kim AM; DiFranco M; Vergara JL
    Biophys J; 1996 Aug; 71(2):924-31. PubMed ID: 8842232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relation between extracellular [K+], membrane potential and contraction in rat soleus muscle: modulation by the Na+-K+ pump.
    Cairns SP; Flatman JA; Clausen T
    Pflugers Arch; 1995 Oct; 430(6):909-15. PubMed ID: 8594543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of extracellular calcium on contractile activation in guinea-pig ventricular muscle.
    Kitazawa T
    J Physiol; 1984 Oct; 355():635-59. PubMed ID: 6492006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.