BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 10801842)

  • 1. Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex.
    Kim T; Park SG; Kim JE; Seol W; Ko YG; Kim S
    J Biol Chem; 2000 Jul; 275(28):21768-72. PubMed ID: 10801842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant expression, purification, and crystallization of the glutaminyl-tRNA synthetase from Toxoplasma gondii.
    van Rooyen JM; Hakimi MA; Belrhali H
    Protein Expr Purif; 2015 Jun; 110():115-21. PubMed ID: 25736594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM; Hou YM
    Biochemistry; 2005 May; 44(19):7240-9. PubMed ID: 15882062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p38 is essential for the assembly and stability of macromolecular tRNA synthetase complex: implications for its physiological significance.
    Kim JY; Kang YS; Lee JW; Kim HJ; Ahn YH; Park H; Ko YG; Kim S
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):7912-6. PubMed ID: 12060739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular assemblage of aminoacyl-tRNA synthetases: quantitative analysis of protein-protein interactions and mechanism of complex assembly.
    Robinson JC; Kerjan P; Mirande M
    J Mol Biol; 2000 Dec; 304(5):983-94. PubMed ID: 11124041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between human tRNA synthetases involves repeated sequence elements.
    Rho SB; Lee KH; Kim JW; Shiba K; Jo YJ; Kim S
    Proc Natl Acad Sci U S A; 1996 Sep; 93(19):10128-33. PubMed ID: 8816763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs): a triad for cellular homeostasis.
    Park SG; Choi EC; Kim S
    IUBMB Life; 2010 Apr; 62(4):296-302. PubMed ID: 20306515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutaminyl-tRNA synthetase as a component of the high-molecular weight complex of human aminoacyl-tRNA synthetases. An immunological study.
    Schray B; Thömmes P; Knippers R
    Biochim Biophys Acta; 1990 Oct; 1087(2):226-34. PubMed ID: 2223884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of the novel five-component apicomplexan multi-aminoacyl-tRNA synthetase complex is driven by the hybrid scaffold protein Tg-p43.
    van Rooyen JM; Murat JB; Hammoudi PM; Kieffer-Jaquinod S; Coute Y; Sharma A; Pelloux H; Belrhali H; Hakimi MA
    PLoS One; 2014; 9(2):e89487. PubMed ID: 24586818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein.
    Quevillon S; Robinson JC; Berthonneau E; Siatecka M; Mirande M
    J Mol Biol; 1999 Jan; 285(1):183-95. PubMed ID: 9878398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retractile lysyl-tRNA synthetase-AIMP2 assembly in the human multi-aminoacyl-tRNA synthetase complex.
    Hei Z; Wu S; Liu Z; Wang J; Fang P
    J Biol Chem; 2019 Mar; 294(13):4775-4783. PubMed ID: 30733335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutaminyl-tRNA synthetase.
    Freist W; Gauss DH; Ibba M; Söll D
    Biol Chem; 1997 Oct; 378(10):1103-17. PubMed ID: 9372179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the ArgRS-GlnRS-AIMP1 complex and its implications for mammalian translation.
    Fu Y; Kim Y; Jin KS; Kim HS; Kim JH; Wang D; Park M; Jo CH; Kwon NH; Kim D; Kim MH; Jeon YH; Hwang KY; Kim S; Cho Y
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15084-9. PubMed ID: 25288775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering mammalian aspartyl-tRNA synthetase to probe structural features mediating its association with the multisynthetase complex.
    Mirande M; Lazard M; Martinez R; Latreille MT
    Eur J Biochem; 1992 Feb; 203(3):459-66. PubMed ID: 1735430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One polypeptide with two aminoacyl-tRNA synthetase activities.
    Stathopoulos C; Li T; Longman R; Vothknecht UC; Becker HD; Ibba M; Söll D
    Science; 2000 Jan; 287(5452):479-82. PubMed ID: 10642548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aminoacyl tRNA synthetase complex interacting multifunctional protein 1 simultaneously binds Glutamyl-Prolyl-tRNA synthetase and scaffold protein aminoacyl tRNA synthetase complex interacting multifunctional protein 3 of the multi-tRNA synthetase complex.
    Schwarz MA; Lee DD; Bartlett S
    Int J Biochem Cell Biol; 2018 Jun; 99():197-202. PubMed ID: 29679766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetric Assembly of a Decameric Subcomplex in Human Multi-tRNA Synthetase Complex Via Interactions between Glutathione Transferase-Homology Domains and Aspartyl-tRNA Synthetase.
    Cho HY; Lee HJ; Choi YS; Kim DK; Jin KS; Kim S; Kang BS
    J Mol Biol; 2019 Nov; 431(22):4475-4496. PubMed ID: 31473157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chimaeric glutamyl:glutaminyl-tRNA synthetase: implications for evolution.
    Saha R; Dasgupta S; Basu G; Roy S
    Biochem J; 2009 Jan; 417(2):449-55. PubMed ID: 18817520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aminoacyl-tRNA synthetase complexes: beyond translation.
    Lee SW; Cho BH; Park SG; Kim S
    J Cell Sci; 2004 Aug; 117(Pt 17):3725-34. PubMed ID: 15286174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of the multi-tRNA synthetase complex and its role in cancer.
    Hyeon DY; Kim JH; Ahn TJ; Cho Y; Hwang D; Kim S
    J Biol Chem; 2019 Apr; 294(14):5340-5351. PubMed ID: 30782841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.