These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 10801842)

  • 21. The tRNA-interacting factor p43 associates with mammalian arginyl-tRNA synthetase but does not modify its tRNA aminoacylation properties.
    Guigou L; Shalak V; Mirande M
    Biochemistry; 2004 Apr; 43(15):4592-600. PubMed ID: 15078106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discovery of two distinct aminoacyl-tRNA synthetase complexes anchored to the Plasmodium surface tRNA import protein.
    Jaramillo Ponce JR; Kapps D; Paulus C; Chicher J; Frugier M
    J Biol Chem; 2022 Jun; 298(6):101987. PubMed ID: 35487244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein-protein interactions and multi-component complexes of aminoacyl-tRNA synthetases.
    Kim JH; Han JM; Kim S
    Top Curr Chem; 2014; 344():119-44. PubMed ID: 24072587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. tRNA-dependent aminoacyl-adenylate hydrolysis by a nonediting class I aminoacyl-tRNA synthetase.
    Gruic-Sovulj I; Uter N; Bullock T; Perona JJ
    J Biol Chem; 2005 Jun; 280(25):23978-86. PubMed ID: 15845536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The tRNA-dependent activation of arginine by arginyl-tRNA synthetase requires inter-domain communication.
    Lazard M; Agou F; Kerjan P; Mirande M
    J Mol Biol; 2000 Sep; 302(4):991-1004. PubMed ID: 10993737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural control of caspase-generated glutamyl-tRNA synthetase by appended noncatalytic WHEP domains.
    Halawani D; Gogonea V; DiDonato JA; Pipich V; Yao P; China A; Topbas C; Vasu K; Arif A; Hazen SL; Fox PL
    J Biol Chem; 2018 Jun; 293(23):8843-8860. PubMed ID: 29643180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A three-dimensional working model of the multienzyme complex of aminoacyl-tRNA synthetases based on electron microscopic placements of tRNA and proteins.
    Wolfe CL; Warrington JA; Treadwell L; Norcum MT
    J Biol Chem; 2005 Nov; 280(46):38870-8. PubMed ID: 16169847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases.
    Kang J; Kim T; Ko YG; Rho SB; Park SG; Kim MJ; Kwon HJ; Kim S
    J Biol Chem; 2000 Oct; 275(41):31682-8. PubMed ID: 10913161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intron positions delineate the evolutionary path of a pervasively appended peptide in five human aminoacyl-tRNA synthetases.
    Shiba K
    J Mol Evol; 2002 Dec; 55(6):727-33. PubMed ID: 12486531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases.
    Cusack S; Härtlein M; Leberman R
    Nucleic Acids Res; 1991 Jul; 19(13):3489-98. PubMed ID: 1852601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions of aminoacyl-tRNA synthetases in high-molecular-weight multienzyme complexes from rat liver.
    Dang CV; Ferguson B; Burke DJ; Garcia V; Yang DC
    Biochim Biophys Acta; 1985 Jul; 829(3):319-26. PubMed ID: 4005265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants.
    Bullock TL; Uter N; Nissan TA; Perona JJ
    J Mol Biol; 2003 Apr; 328(2):395-408. PubMed ID: 12691748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetric behavior of archaeal prolyl-tRNA synthetase.
    Ambrogelly A; Kamtekar S; Stathopoulos C; Kennedy D; Söll D
    FEBS Lett; 2005 Nov; 579(27):6017-22. PubMed ID: 16226256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solution X-ray scattering highlights discrepancies in Plasmodium multi-aminoacyl-tRNA synthetase complexes.
    Jaramillo Ponce JR; Théobald-Dietrich A; Bénas P; Paulus C; Sauter C; Frugier M
    Protein Sci; 2023 Feb; 32(2):e4564. PubMed ID: 36606712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly.
    Karanasios E; Simader H; Panayotou G; Suck D; Simos G
    J Mol Biol; 2007 Dec; 374(4):1077-90. PubMed ID: 17976650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and functional analysis of Glutaminyl-tRNA synthetase (TtGlnRS) from Thermus thermophilus HB8 and its complexes.
    Nachiappan M; Jain V; Sharma A; Yogavel M; Jeyakanthan J
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1379-1386. PubMed ID: 30248426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Switching the amino acid specificity of an aminoacyl-tRNA synthetase.
    Agou F; Quevillon S; Kerjan P; Mirande M
    Biochemistry; 1998 Aug; 37(32):11309-14. PubMed ID: 9698378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-essential role of lysine residues for the catalytic activities of aspartyl-tRNA synthetase and comparison with other aminoacyl-tRNA synthetases.
    Théobald A; Kern D; Giegé R
    Biochimie; 1988 Feb; 70(2):205-13. PubMed ID: 3134944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Escherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity.
    Uemura H; Conley J; Yamao F; Rogers J; Söll D
    Protein Seq Data Anal; 1988; 1(6):479-85. PubMed ID: 2464170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.